001     140255
005     20240321220756.0
024 7 _ |a 10.1016/j.bbr.2018.02.042
|2 doi
024 7 _ |a pmid:29501506
|2 pmid
024 7 _ |a 0166-4328
|2 ISSN
024 7 _ |a 1872-7549
|2 ISSN
024 7 _ |a altmetric:70357702
|2 altmetric
037 _ _ |a DZNE-2020-06577
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Reboreda, Antonio
|0 P:(DE-2719)2813728
|b 0
|e First author
|u dzne
245 _ _ |a Do TRPC channels support working memory? Comparing modulations of TRPC channels and working memory through G-protein coupled receptors and neuromodulators.
260 _ _ |a Amsterdam
|c 2018
|b Elsevier
264 _ 1 |3 print
|2 Crossref
|b Elsevier BV
|c 2018-11-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1710161271_27995
|2 PUB:(DE-HGF)
|x Review Article
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Working memory is a crucial ability we use in daily life. However, the cellular mechanisms supporting working memory still remain largely unclear. A key component of working memory is persistent neural firing which is believed to serve short-term (hundreds of milliseconds up to tens of seconds) maintenance of necessary information. In this review, we will focus on the role of transient receptor potential canonical (TRPC) channels as a mechanism underlying persistent firing. Many years of in vitro work have been suggesting a crucial role of TRPC channels in working memory and temporal association tasks. If TRPC channels are indeed a central mechanism for working memory, manipulations which impair or facilitate working memory should have a similar effect on TRPC channel modulation. However, modulations of working memory and TRPC channels were never systematically compared, and it remains unanswered whether TRPC channels indeed contribute to working memory in vivo or not. In this article, we review the effects of G-protein coupled receptors (GPCR) and neuromodulators, including acetylcholine, noradrenalin, serotonin and dopamine, on working memory and TRPC channels. Based on comparisons, we argue that GPCR and downstream signaling pathways that activate TRPC, generally support working memory, while those that suppress TRPC channels impair it. However, depending on the channel types, areas, and systems tested, this is not the case in all studies. Further work to clarify involvement of specific TRPC channels in working memory tasks and how they are affected by neuromodulators is still necessary in the future.
536 _ _ |a 342 - Disease Mechanisms and Model Systems (POF3-342)
|0 G:(DE-HGF)POF3-342
|c POF3-342
|f POF III
|x 0
536 _ _ |a 344 - Clinical and Health Care Research (POF3-344)
|0 G:(DE-HGF)POF3-344
|c POF3-344
|f POF III
|x 1
542 _ _ |i 2018-11-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a Receptors, G-Protein-Coupled
|2 NLM Chemicals
650 _ 7 |a TRPC Cation Channels
|2 NLM Chemicals
650 _ 7 |a Serotonin
|0 333DO1RDJY
|2 NLM Chemicals
650 _ 7 |a Acetylcholine
|0 N9YNS0M02X
|2 NLM Chemicals
650 _ 7 |a Dopamine
|0 VTD58H1Z2X
|2 NLM Chemicals
650 _ 7 |a Norepinephrine
|0 X4W3ENH1CV
|2 NLM Chemicals
650 _ 2 |a Acetylcholine: physiology
|2 MeSH
650 _ 2 |a Action Potentials
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Conditioning, Psychological
|2 MeSH
650 _ 2 |a Dopamine: physiology
|2 MeSH
650 _ 2 |a Hippocampus: physiology
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Memory, Short-Term: physiology
|2 MeSH
650 _ 2 |a Neurons: physiology
|2 MeSH
650 _ 2 |a Norepinephrine: physiology
|2 MeSH
650 _ 2 |a Receptors, G-Protein-Coupled: physiology
|2 MeSH
650 _ 2 |a Serotonin: physiology
|2 MeSH
650 _ 2 |a TRPC Cation Channels: physiology
|2 MeSH
700 1 _ |a Theissen, Frederik M
|0 P:(DE-2719)2811872
|b 1
|u dzne
700 1 _ |a Valero-Aracama, Maria J
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Arboit, Alberto
|0 P:(DE-2719)2811871
|b 3
|u dzne
700 1 _ |a Corbu, Mihaela A
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Yoshida, Motoharu
|0 P:(DE-2719)2811873
|b 5
|e Last author
|u dzne
773 1 8 |a 10.1016/j.bbr.2018.02.042
|b : Elsevier BV, 2018-11-01
|p 64-83
|3 journal-article
|2 Crossref
|t Behavioural Brain Research
|v 354
|y 2018
|x 0166-4328
773 _ _ |a 10.1016/j.bbr.2018.02.042
|g Vol. 354, p. 64 - 83
|0 PERI:(DE-600)2013604-3
|q 354<64 - 83
|p 64-83
|t Behavioural brain research
|v 354
|y 2018
|x 0166-4328
856 4 _ |u https://pub.dzne.de/record/140255/files/DZNE-2020-06577_Restricted.pdf
856 4 _ |u https://pub.dzne.de/record/140255/files/DZNE-2020-06577_Restricted.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:pub.dzne.de:140255
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2813728
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2811872
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2811871
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2811873
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-342
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms and Model Systems
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-344
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 1
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-17
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BEHAV BRAIN RES : 2021
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-17
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-17
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-17
920 1 _ |0 I:(DE-2719)1310011
|k AG Yoshida
|l Cognitive Neurophysiology
|x 0
920 1 _ |0 I:(DE-2719)1310004
|k AG Angenstein
|l Functional Neuroimaging
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1310011
980 _ _ |a I:(DE-2719)1310004
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21