001     140404
005     20250717150707.0
024 7 _ |a 10.1021/acschemneuro.8b00182
|2 doi
024 7 _ |a pmid:29944336
|2 pmid
024 7 _ |a altmetric:44249894
|2 altmetric
037 _ _ |a DZNE-2020-06726
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Kiss, Róbert
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Structural Basis of Small Molecule Targetability of Monomeric Tau Protein.
260 _ _ |a Washington, DC
|c 2018
|b ACS Publ.
264 _ 1 |3 online
|2 Crossref
|b American Chemical Society (ACS)
|c 2018-06-26
264 _ 1 |3 print
|2 Crossref
|b American Chemical Society (ACS)
|c 2018-12-19
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1752757578_27527
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The therapeutic targeting of intrinsically disordered proteins (IDPs) by small molecules has been a challenge due to their heterogeneous conformational ensembles. A potential therapeutic strategy to alleviate the aggregation of IDPs is to maintain them in their native monomeric state by small molecule binding. This study investigates the structural basis of small molecule druggability of native monomeric Tau whose aggregation is linked to the onset of Tauopathies such as Alzheimer's disease. Initially, two available monomeric conformational ensembles of a shorter Tau construct K18 (also termed Tau4RD) were analyzed which revealed striking structural differences between the two ensembles, while similar number of hot spots and small molecule binding sites were identified on monomeric Tau ensembles as on tertiary folded proteins of similar size. Remarkably, some critical fibril forming sequence regions of Tau (V306-K311, V275-K280) participated in hot spot formation with higher frequency compared to other regions. As an example of small molecule binding to monomeric Tau, it was shown that methylene blue (MB) bound to monomeric K18 and full-length Tau selectively with high affinity (Kd = 125.8 nM and 86.6 nM, respectively) with binding modes involving Cys291 and Cys322, previously reported to be oxidized in the presence of MB. Overall, our results provide structure-based evidence that Tau can be a viable drug target for small molecules and indicate that specific small molecules may be able to bind to monomeric Tau and influence the way in which the protein interacts among itself and with other proteins.
536 _ _ |a 342 - Disease Mechanisms and Model Systems (POF3-342)
|0 G:(DE-HGF)POF3-342
|c POF3-342
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a Intrinsically Disordered Proteins
|2 NLM Chemicals
650 _ 7 |a MAPT protein, human
|2 NLM Chemicals
650 _ 7 |a tau Proteins
|2 NLM Chemicals
650 _ 7 |a Methylene Blue
|0 T42P99266K
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Intrinsically Disordered Proteins: metabolism
|2 MeSH
650 _ 2 |a Methylene Blue: metabolism
|2 MeSH
650 _ 2 |a Molecular Docking Simulation
|2 MeSH
650 _ 2 |a Molecular Targeted Therapy
|2 MeSH
650 _ 2 |a Neurofibrillary Tangles: metabolism
|2 MeSH
650 _ 2 |a Protein Structure, Tertiary
|2 MeSH
650 _ 2 |a Tauopathies: metabolism
|2 MeSH
650 _ 2 |a tau Proteins: chemistry
|2 MeSH
650 _ 2 |a tau Proteins: metabolism
|2 MeSH
650 _ 2 |a tau Proteins: ultrastructure
|2 MeSH
700 1 _ |a Csizmadia, Georgina
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Solti, Katalin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Keresztes, Attila
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Zhu, Max
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Pickhardt, Marcus
|0 P:(DE-2719)2810282
|b 5
|u dzne
700 1 _ |a Mandelkow, Eckhard
|0 P:(DE-2719)2541671
|b 6
|u dzne
700 1 _ |a Tóth, Gergely
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
773 1 8 |a 10.1021/acschemneuro.8b00182
|b : American Chemical Society (ACS), 2018-06-26
|n 12
|p 2997-3006
|3 journal-article
|2 Crossref
|t ACS Chemical Neuroscience
|v 9
|y 2018
|x 1948-7193
773 _ _ |a 10.1021/acschemneuro.8b00182
|g Vol. 9, no. 12, p. 2997 - 3006
|0 PERI:(DE-600)2528493-9
|n 12
|q 9:12<2997 - 3006
|p 2997 - 3006
|t ACS chemical neuroscience
|v 9
|y 2018
|x 1948-7193
856 4 _ |u https://pub.dzne.de/record/140404/files/DZNE-2020-06726_Restricted.pdf
856 4 _ |u https://pub.dzne.de/record/140404/files/DZNE-2020-06726_Restricted.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:pub.dzne.de:140404
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2810282
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2541671
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-342
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms and Model Systems
|x 0
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS CHEM NEUROSCI : 2021
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-24
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS CHEM NEUROSCI : 2021
|d 2022-11-24
920 1 _ |0 I:(DE-2719)1013014
|k AG (Eckhard) Mandelkow
|l Structural Principles of Neurodegeneration
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1013014
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21