001     140581
005     20240321220832.0
024 7 _ |a 10.1523/JNEUROSCI.1317-18.2019
|2 doi
024 7 _ |a pmid:30655355
|2 pmid
024 7 _ |a pmc:PMC6433757
|2 pmc
024 7 _ |a 0270-6474
|2 ISSN
024 7 _ |a 1529-2401
|2 ISSN
024 7 _ |a altmetric:55526003
|2 altmetric
037 _ _ |a DZNE-2020-06903
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Hoffmann, Sheila
|0 P:(DE-2719)2811236
|b 0
|e First author
|u dzne
245 _ _ |a Light-Activated ROS Production Induces Synaptic Autophagy.
260 _ _ |a Washington, DC
|c 2019
|b Soc.57413
264 _ 1 |3 online
|2 Crossref
|b Society for Neuroscience
|c 2019-01-17
264 _ 1 |3 print
|2 Crossref
|b Society for Neuroscience
|c 2019-03-20
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1677246937_7992
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The regulated turnover of synaptic vesicle (SV) proteins is thought to involve the ubiquitin-dependent tagging and degradation through endo-lysosomal and autophagy pathways. Yet, it remains unclear which of these pathways are used, when they become activated, and whether SVs are cleared en masse together with SV proteins or whether both are degraded selectively. Equally puzzling is how quickly these systems can be activated and whether they function in real-time to support synaptic health. To address these questions, we have developed an imaging-based system that simultaneously tags presynaptic proteins while monitoring autophagy. Moreover, by tagging SV proteins with a light-activated ROS generator, Supernova, it was possible to temporally control the damage to specific SV proteins and assess their consequence to autophagy-mediated clearance mechanisms and synaptic function. Our results show that, in mouse hippocampal neurons of either sex, presynaptic autophagy can be induced in as little as 5-10 min and eliminates primarily the damaged protein rather than the SV en masse. Importantly, we also find that autophagy is essential for synaptic function, as light-activated damage to, for example, Synaptophysin only compromises synaptic function when autophagy is simultaneously blocked. These data support the concept that presynaptic boutons have a robust highly regulated clearance system to maintain not only synapse integrity, but also synaptic function.SIGNIFICANCE STATEMENT The real-time surveillance and clearance of synaptic proteins are thought to be vital to the health, functionality, and integrity of vertebrate synapses and are compromised in neurodegenerative disorders, yet the fundamental mechanisms regulating these systems remain enigmatic. Our analysis reveals that presynaptic autophagy is a critical part of a real-time clearance system at synapses capable of responding to local damage of synaptic vesicle proteins within minutes and to be critical for the ongoing functionality of these synapses. These data indicate that synapse autophagy is not only locally regulated but also crucial for the health and functionality of vertebrate presynaptic boutons.
536 _ _ |a 341 - Molecular Signaling (POF3-341)
|0 G:(DE-HGF)POF3-341
|c POF3-341
|f POF III
|x 0
542 _ _ |i 2019-09-20
|2 Crossref
|u https://creativecommons.org/licenses/by-nc-sa/4.0/
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Autophagy: physiology
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a HEK293 Cells
|2 MeSH
650 _ 2 |a HeLa Cells
|2 MeSH
650 _ 2 |a Hippocampus: metabolism
|2 MeSH
650 _ 2 |a Hippocampus: ultrastructure
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Mice, Inbred C57BL
|2 MeSH
650 _ 2 |a Neurons: metabolism
|2 MeSH
650 _ 2 |a Neurons: ultrastructure
|2 MeSH
650 _ 2 |a Presynaptic Terminals: metabolism
|2 MeSH
650 _ 2 |a Presynaptic Terminals: ultrastructure
|2 MeSH
650 _ 2 |a Reactive Oxygen Species: metabolism
|2 MeSH
650 _ 2 |a Synaptic Vesicles: metabolism
|2 MeSH
650 _ 2 |a Synaptic Vesicles: ultrastructure
|2 MeSH
700 1 _ |a Orlando, Marta
|b 1
700 1 _ |a Andrzejak, Ewa
|0 P:(DE-2719)2811708
|b 2
|u dzne
700 1 _ |a Bruns, Christine
|0 P:(DE-2719)2811027
|b 3
|u dzne
700 1 _ |a Trimbuch, Thorsten
|b 4
700 1 _ |a Rosenmund, Christian
|b 5
700 1 _ |a Garner, Craig C
|0 P:(DE-2719)2810922
|b 6
|u dzne
700 1 _ |a Ackermann, Frauke
|0 P:(DE-2719)2810967
|b 7
|e Last author
|u dzne
773 1 8 |a 10.1523/jneurosci.1317-18.2019
|b Society for Neuroscience
|d 2019-01-17
|n 12
|p 2163-2183
|3 journal-article
|2 Crossref
|t The Journal of Neuroscience
|v 39
|y 2019
|x 0270-6474
773 _ _ |a 10.1523/JNEUROSCI.1317-18.2019
|g Vol. 39, no. 12, p. 2163 - 2183
|0 PERI:(DE-600)1475274-8
|n 12
|q 39:12<2163 - 2183
|p 2163-2183
|t The journal of neuroscience
|v 39
|y 2019
|x 0270-6474
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6433757
909 C O |p VDB
|o oai:pub.dzne.de:140581
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2811236
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2811708
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2811027
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2810922
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)2810967
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-341
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Molecular Signaling
|x 0
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NEUROSCI : 2021
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-13
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-13
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J NEUROSCI : 2021
|d 2022-11-13
920 1 _ |0 I:(DE-2719)1810001
|k AG Garner
|l Synaptopathy
|x 0
920 1 _ |0 I:(DE-2719)1813004
|k AG Ackermann
|l Astrocyte - Synapse Interaction
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1810001
980 _ _ |a I:(DE-2719)1813004
980 _ _ |a UNRESTRICTED
999 C 5 |a 10.1083/jcb.201401070
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1042/BJ20070797
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/336185a0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.7554/eLife.05597
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/JNEUROSCI.0800-08.2008
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1042/BJ20061907
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nbt1175
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0955-0674(96)80060-3
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1083/jcb.57.2.499
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41593-017-0037-5
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nrm855
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1083/jcb.201412046
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/15548627.2015.1062203
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nn756
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.4161/auto.4625
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nrm3249
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1371/journal.pone.0063191
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.tcb.2017.01.001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/JNEUROSCI.1560-11.2011
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nchembio.500
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nrn.2016.51
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nmeth.1318
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1111/tra.12140
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature04724
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.neuron.2012.02.020
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1046/j.1471-4159.1999.0730921.x
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.tcb.2008.07.001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/0471142956.cy1235s69
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/JNEUROSCI.4965-09.2010
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.4161/auto.7.3.14487
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1371/journal.pone.0018556
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.4161/auto.19496
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature04723
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.cell.2010.05.008
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.redox.2014.06.004
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1371/journal.pone.0011503
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.conb.2017.12.006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 Lilienbaum
|y 2013
|2 Crossref
|o Lilienbaum 2013
999 C 5 |a 10.1016/j.neuron.2013.05.022
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0006-3495(92)81902-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1067081
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/JNEUROSCI.0195-12.2012
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.devcel.2014.06.001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1083/jcb.201106120
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nn.2528
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/15548627.2018.1474314
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0091-679X(03)01007-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.cell.2010.01.028
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1146/annurev-cellbio-092910-154005
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nm.3232
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1093/jnen/64.2.113
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.neuron.2017.01.026
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1242/bio.20134275
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature07961
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/embj.201386357
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.cell.2011.07.030
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nrd3802
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/cr.2013.166
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/emboj.2009.80
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/JNEUROSCI.0725-16.2016
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/JNEUROSCI.4533-11.2012
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1371/journal.pbio.1001041
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.neuron.2016.09.037
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/JNEUROSCI.4390-09.2009
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1371/journal.pone.0009979
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nrm2728
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.cell.2006.10.030
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/srep02629
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.7554/eLife.21776
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.freeradbiomed.2018.02.002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1371/journal.pbio.0040271
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.cell.2011.02.039
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.15252/embj.201695773
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1083/jcb.201611113
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.3389/fphys.2012.00229
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.tins.2011.03.004
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/emboj.2013.27
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/JNEUROSCI.3757-14.2015
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.gde.2017.01.015
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.4161/auto.21211
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.4161/auto.7.10.16626
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.cell.2007.06.052
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1034/j.1600-0854.2000.010605.x
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.neuron.2005.07.008
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.bbamcr.2009.01.016
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.2353/ajpath.2007.060524
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21