001     140584
005     20240321220833.0
024 7 _ |a 10.1074/jbc.RA118.006311
|2 doi
024 7 _ |a pmid:30662006
|2 pmid
024 7 _ |a pmc:PMC6422076
|2 pmc
024 7 _ |a 0021-9258
|2 ISSN
024 7 _ |a 1067-8816
|2 ISSN
024 7 _ |a 1083-351X
|2 ISSN
024 7 _ |a altmetric:55338395
|2 altmetric
037 _ _ |a DZNE-2020-06906
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Woeste, Marina A
|b 0
245 _ _ |a Species-specific differences in nonlysosomal glucosylceramidase GBA2 function underlie locomotor dysfunction arising from loss-of-function mutations.
260 _ _ |a Bethesda, Md.
|c 2019
|b Soc.60645
264 _ 1 |3 online
|2 Crossref
|b American Society for Biochemistry & Molecular Biology (ASBMB)
|c 2019-01-20
264 _ 1 |3 print
|2 Crossref
|b American Society for Biochemistry & Molecular Biology (ASBMB)
|c 2019-03-15
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1588089624_27525
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The nonlysosomal glucosylceramidase β2 (GBA2) catalyzes the hydrolysis of glucosylceramide to glucose and ceramide. Mutations in the human GBA2 gene have been associated with hereditary spastic paraplegia (HSP), autosomal-recessive cerebellar ataxia (ARCA), and the Marinesco-Sjögren-like syndrome. However, the underlying molecular mechanisms are ill-defined. Here, using biochemistry, immunohistochemistry, structural modeling, and mouse genetics, we demonstrate that all but one of the spastic gait locus #46 (SPG46)-connected mutations cause a loss of GBA2 activity. We demonstrate that GBA2 proteins form oligomeric complexes and that protein-protein interactions are perturbed by some of these mutations. To study the pathogenesis of GBA2-related HSP and ARCA in vivo, we investigated GBA2-KO mice as a mammalian model system. However, these mice exhibited a high phenotypic variance and did not fully resemble the human phenotype, suggesting that mouse and human GBA2 differ in function. Whereas some GBA2-KO mice displayed a strong locomotor defect, others displayed only mild alterations of the gait pattern and no signs of cerebellar defects. On a cellular level, inhibition of GBA2 activity in isolated cerebellar neurons dramatically affected F-actin dynamics and reduced neurite outgrowth, which has been associated with the development of neurological disorders. Our results shed light on the molecular mechanism underlying the pathogenesis of GBA2-related HSP and ARCA and reveal species-specific differences in GBA2 function in vivo.
536 _ _ |a 341 - Molecular Signaling (POF3-341)
|0 G:(DE-HGF)POF3-341
|c POF3-341
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a beta-Glucosidase
|0 EC 3.2.1.21
|2 NLM Chemicals
650 _ 7 |a beta-glucosidase 2, mouse
|0 EC 3.2.1.21
|2 NLM Chemicals
650 _ 7 |a GBA2 protein, human
|0 EC 3.2.1.45
|2 NLM Chemicals
650 _ 2 |a Glucosylceramidase
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Biocatalysis
|2 MeSH
650 _ 2 |a Cerebellar Ataxia: genetics
|2 MeSH
650 _ 2 |a Cerebellar Ataxia: metabolism
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Locomotion: genetics
|2 MeSH
650 _ 2 |a Loss of Function Mutation
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Mice, Knockout
|2 MeSH
650 _ 2 |a Spastic Paraplegia, Hereditary: genetics
|2 MeSH
650 _ 2 |a Spastic Paraplegia, Hereditary: metabolism
|2 MeSH
650 _ 2 |a Species Specificity
|2 MeSH
650 _ 2 |a beta-Glucosidase: antagonists & inhibitors
|2 MeSH
650 _ 2 |a beta-Glucosidase: deficiency
|2 MeSH
650 _ 2 |a beta-Glucosidase: genetics
|2 MeSH
650 _ 2 |a beta-Glucosidase: metabolism
|2 MeSH
700 1 _ |a Stern, Sina
|0 P:(DE-2719)2810277
|b 1
|u dzne
700 1 _ |a Raju, Diana N
|b 2
700 1 _ |a Grahn, Elena
|b 3
700 1 _ |a Dittmann, Dominik
|b 4
700 1 _ |a Gutbrod, Katharina
|b 5
700 1 _ |a Dörmann, Peter
|b 6
700 1 _ |a Hansen, Jan N
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Schonauer, Sophie
|b 8
700 1 _ |a Marx, Carina E
|b 9
700 1 _ |a Hamzeh, Hussein
|b 10
700 1 _ |a Körschen, Heinz G
|b 11
700 1 _ |a Aerts, Johannes M F G
|b 12
700 1 _ |a Bönigk, Wolfgang
|b 13
700 1 _ |a Endepols, Heike
|b 14
700 1 _ |a Sandhoff, Roger
|b 15
700 1 _ |a Geyer, Matthias
|b 16
700 1 _ |a Berger, Thomas K
|b 17
700 1 _ |a Bradke, Frank
|0 P:(DE-2719)2810270
|b 18
|u dzne
700 1 _ |a Wachten, Dagmar
|0 P:(DE-HGF)0
|b 19
|e Corresponding author
773 1 8 |a 10.1074/jbc.ra118.006311
|b : American Society for Biochemistry & Molecular Biology (ASBMB), 2019-01-20
|n 11
|p 3853-3871
|3 journal-article
|2 Crossref
|t Journal of Biological Chemistry
|v 294
|y 2019
|x 0021-9258
773 _ _ |a 10.1074/jbc.RA118.006311
|g Vol. 294, no. 11, p. 3853 - 3871
|0 PERI:(DE-600)1474604-9
|n 11
|q 294:11<3853 - 3871
|p 3853-3871
|t The journal of biological chemistry
|v 294
|y 2019
|x 0021-9258
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6422076
909 C O |o oai:pub.dzne.de:140584
|p VDB
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2810277
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 18
|6 P:(DE-2719)2810270
913 1 _ |a DE-HGF
|b Forschungsbereich Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-341
|2 G:(DE-HGF)POF3-300
|v Molecular Signaling
|x 0
914 1 _ |y 2019
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J BIOL CHEM : 2019
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-05-04
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-05-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-05-04
920 1 _ |0 I:(DE-2719)1013002
|k AG Bradke
|l Axon Growth and Regeneration
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1013002
980 _ _ |a UNRESTRICTED
999 C 5 |a 10.1074/jbc.M610544200
|9 -- missing cx lookup --
|2 Crossref
|o 10.1074/jbc.M610544200
999 C 5 |a 10.1074/jbc.M112.414714
|9 -- missing cx lookup --
|2 Crossref
|o 10.1074/jbc.M112.414714
999 C 5 |a 10.1172/JCI29224
|9 -- missing cx lookup --
|2 Crossref
|o 10.1172/JCI29224
999 C 5 |a 10.1371/journal.pgen.1005063
|9 -- missing cx lookup --
|2 Crossref
|o 10.1371/journal.pgen.1005063
999 C 5 |a 10.1073/pnas.262586099
|9 -- missing cx lookup --
|2 Crossref
|o 10.1073/pnas.262586099
999 C 5 |a 10.1093/humrep/dei463
|9 -- missing cx lookup --
|2 Crossref
|o 10.1093/humrep/dei463
999 C 5 |a 10.1074/jbc.M702387200
|9 -- missing cx lookup --
|2 Crossref
|o 10.1074/jbc.M702387200
999 C 5 |a 10.1007/s11064-012-0719-z
|9 -- missing cx lookup --
|2 Crossref
|o 10.1007/s11064-012-0719-z
999 C 5 |a 10.1371/journal.pone.0138107
|9 -- missing cx lookup --
|2 Crossref
|o 10.1371/journal.pone.0138107
999 C 5 |a 10.1007/s00415-013-7206-6
|9 -- missing cx lookup --
|2 Crossref
|o 10.1007/s00415-013-7206-6
999 C 5 |a 10.1016/j.ajhg.2012.12.012
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.ajhg.2012.12.012
999 C 5 |a 10.1371/journal.pone.0169309
|9 -- missing cx lookup --
|2 Crossref
|o 10.1371/journal.pone.0169309
999 C 5 |a 10.1016/j.ajhg.2012.11.021
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.ajhg.2012.11.021
999 C 5 |a 10.1111/ahg.12045
|9 -- missing cx lookup --
|2 Crossref
|o 10.1111/ahg.12045
999 C 5 |a 10.1016/S0140-6736(83)92879-9
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/S0140-6736(83)92879-9
999 C 5 |a 10.1055/s-0031-1299787
|9 -- missing cx lookup --
|2 Crossref
|o 10.1055/s-0031-1299787
999 C 5 |a 10.3389/fnmol.2017.00386
|9 -- missing cx lookup --
|2 Crossref
|o 10.3389/fnmol.2017.00386
999 C 5 |a 10.1016/j.bbrc.2015.07.112
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.bbrc.2015.07.112
999 C 5 |a 10.1021/acschembio.6b00192
|9 -- missing cx lookup --
|2 Crossref
|o 10.1021/acschembio.6b00192
999 C 5 |a 10.1021/acscentsci.7b00214
|9 -- missing cx lookup --
|2 Crossref
|o 10.1021/acscentsci.7b00214
999 C 5 |a 10.1093/nar/gky427
|9 -- missing cx lookup --
|2 Crossref
|o 10.1093/nar/gky427
999 C 5 |a 10.1107/S2059798316008482
|9 -- missing cx lookup --
|2 Crossref
|o 10.1107/S2059798316008482
999 C 5 |y 1991
|2 Crossref
|o Esen 1991
999 C 5 |a 10.1074/jbc.M116.762831
|9 -- missing cx lookup --
|2 Crossref
|o 10.1074/jbc.M116.762831
999 C 5 |a 10.1074/jbc.M110641200
|9 -- missing cx lookup --
|2 Crossref
|o 10.1074/jbc.M110641200
999 C 5 |a 10.1186/1750-1172-8-151
|9 -- missing cx lookup --
|2 Crossref
|o 10.1186/1750-1172-8-151
999 C 5 |a 10.1074/jbc.273.41.26522
|9 -- missing cx lookup --
|2 Crossref
|o 10.1074/jbc.273.41.26522
999 C 5 |a 10.1089/neu.2006.23.537
|9 -- missing cx lookup --
|2 Crossref
|o 10.1089/neu.2006.23.537
999 C 5 |a 10.1016/j.clineuro.2018.02.042
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.clineuro.2018.02.042
999 C 5 |a 10.2217/14622416.9.6.717
|9 -- missing cx lookup --
|2 Crossref
|o 10.2217/14622416.9.6.717
999 C 5 |a 10.1186/1477-7827-5-1
|9 -- missing cx lookup --
|2 Crossref
|o 10.1186/1477-7827-5-1
999 C 5 |a 10.1016/j.bcmd.2013.04.005
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.bcmd.2013.04.005
999 C 5 |a 10.1185/03007990802576518
|9 -- missing cx lookup --
|2 Crossref
|o 10.1185/03007990802576518
999 C 5 |a 10.1002/14651858.CD010324.pub2
|9 -- missing cx lookup --
|2 Crossref
|o 10.1002/14651858.CD010324.pub2
999 C 5 |a 10.1172/JCI200420138
|9 -- missing cx lookup --
|2 Crossref
|o 10.1172/JCI200420138
999 C 5 |a 10.1007/s10048-010-0252-7
|9 -- missing cx lookup --
|2 Crossref
|o 10.1007/s10048-010-0252-7
999 C 5 |a 10.1016/j.ymgme.2017.07.002
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.ymgme.2017.07.002
999 C 5 |y 1993
|2 Crossref
|o Harel 1993
999 C 5 |a 10.1046/j.1471-4159.1995.65041551.x
|9 -- missing cx lookup --
|2 Crossref
|o 10.1046/j.1471-4159.1995.65041551.x
999 C 5 |a 10.1523/JNEUROSCI.17-09-02929.1997
|9 -- missing cx lookup --
|2 Crossref
|o 10.1523/JNEUROSCI.17-09-02929.1997
999 C 5 |a 10.1111/jnc.14146
|9 -- missing cx lookup --
|2 Crossref
|o 10.1111/jnc.14146
999 C 5 |a 10.1016/j.cell.2013.12.009
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.cell.2013.12.009
999 C 5 |a 10.1002/dneu.20734
|9 -- missing cx lookup --
|2 Crossref
|o 10.1002/dneu.20734
999 C 5 |a 10.1016/j.cub.2012.04.019
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.cub.2012.04.019
999 C 5 |a 10.4161/sgtp.27974
|9 -- missing cx lookup --
|2 Crossref
|o 10.4161/sgtp.27974
999 C 5 |a 10.1016/j.expneurol.2004.09.016
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.expneurol.2004.09.016
999 C 5 |a 10.1016/bs.mie.2017.06.039
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/bs.mie.2017.06.039
999 C 5 |a 10.1016/j.bbalip.2011.02.005
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.bbalip.2011.02.005
999 C 5 |a 10.1194/jlr.M064923
|9 -- missing cx lookup --
|2 Crossref
|o 10.1194/jlr.M064923
999 C 5 |a 10.1016/j.bbamem.2008.01.001
|9 -- missing cx lookup --
|2 Crossref
|o 10.1016/j.bbamem.2008.01.001
999 C 5 |a 10.1002/jnr.21147
|9 -- missing cx lookup --
|2 Crossref
|o 10.1002/jnr.21147
999 C 5 |a 10.1038/nprot.2007.294
|9 -- missing cx lookup --
|2 Crossref
|o 10.1038/nprot.2007.294
999 C 5 |a 10.1007/978-1-4939-0844-8_15
|9 -- missing cx lookup --
|2 Crossref
|o 10.1007/978-1-4939-0844-8_15


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21