| Home > Publications Database > Characterizing Microstructural Tissue Properties in Multiple Sclerosis with Diffusion MRI at 7 T and 3 T: The Impact of the Experimental Design. > print |
| 001 | 140615 | ||
| 005 | 20240321220837.0 | ||
| 024 | 7 | _ | |a 10.1016/j.neuroscience.2018.03.048 |2 doi |
| 024 | 7 | _ | |a pmid:29631021 |2 pmid |
| 024 | 7 | _ | |a 0306-4522 |2 ISSN |
| 024 | 7 | _ | |a 1873-7544 |2 ISSN |
| 024 | 7 | _ | |a altmetric:35995908 |2 altmetric |
| 037 | _ | _ | |a DZNE-2020-06937 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a De Santis, Silvia |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Characterizing Microstructural Tissue Properties in Multiple Sclerosis with Diffusion MRI at 7 T and 3 T: The Impact of the Experimental Design. |
| 260 | _ | _ | |a Amsterdam [u.a.] |c 2019 |b Elsevier Science |
| 264 | _ | 1 | |3 print |2 Crossref |b Elsevier BV |c 2019-04-01 |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1685007431_32152 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a The recent introduction of advanced magnetic resonance (MR) imaging techniques to characterize focal and global degeneration in multiple sclerosis (MS), like the Composite Hindered and Restricted Model of Diffusion, or CHARMED, diffusional kurtosis imaging (DKI) and Neurite Orientation Dispersion and Density Imaging (NODDI) made available new tools to image axonal pathology non-invasively in vivo. These methods already showed greater sensitivity and specificity compared to conventional diffusion tensor-based metrics (e.g., fractional anisotropy), overcoming some of its limitations. While previous studies uncovered global and focal axonal degeneration in MS patients compared to healthy controls, here our aim is to investigate and compare different diffusion MRI acquisition protocols in their ability to highlight microstructural differences between MS and control tissue over several much used models. For comparison, we contrasted the ability of fractional anisotropy measurements to uncover differences between lesion, normal-appearing white matter (WM), gray matter and healthy tissue under the same imaging protocols. We show that: (1) focal and diffuse differences in several microstructural parameters are observed under clinical settings; (2) advanced models (CHARMED, DKI and NODDI) have increased specificity and sensitivity to neurodegeneration when compared to fractional anisotropy measurements; and (3) both high (3 T) and ultra-high fields (7 T) are viable options for imaging tissue change in MS lesions and normal appearing WM, while higher b-values are less beneficial under the tested short-time (10 min acquisition) conditions. |
| 536 | _ | _ | |a 345 - Population Studies and Genetics (POF3-345) |0 G:(DE-HGF)POF3-345 |c POF3-345 |f POF III |x 0 |
| 542 | _ | _ | |i 2019-04-01 |2 Crossref |u https://www.elsevier.com/tdm/userlicense/1.0/ |
| 542 | _ | _ | |i 2018-04-06 |2 Crossref |u http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| 588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
| 650 | _ | 2 | |a Adult |2 MeSH |
| 650 | _ | 2 | |a Cohort Studies |2 MeSH |
| 650 | _ | 2 | |a Diffusion Magnetic Resonance Imaging: instrumentation |2 MeSH |
| 650 | _ | 2 | |a Diffusion Magnetic Resonance Imaging: methods |2 MeSH |
| 650 | _ | 2 | |a Humans |2 MeSH |
| 650 | _ | 2 | |a Image Interpretation, Computer-Assisted |2 MeSH |
| 650 | _ | 2 | |a Multiple Sclerosis: diagnostic imaging |2 MeSH |
| 650 | _ | 2 | |a Multiple Sclerosis: therapy |2 MeSH |
| 650 | _ | 2 | |a Nerve Degeneration: diagnostic imaging |2 MeSH |
| 650 | _ | 2 | |a Research Design |2 MeSH |
| 650 | _ | 2 | |a Sensitivity and Specificity |2 MeSH |
| 650 | _ | 2 | |a Time Factors |2 MeSH |
| 700 | 1 | _ | |a Bastiani, Matteo |b 1 |
| 700 | 1 | _ | |a Droby, Amgad |b 2 |
| 700 | 1 | _ | |a Kolber, Pierre |b 3 |
| 700 | 1 | _ | |a Zipp, Frauke |b 4 |
| 700 | 1 | _ | |a Pracht, Eberhard |0 P:(DE-2719)2810559 |b 5 |u dzne |
| 700 | 1 | _ | |a Stöcker, Tony |0 P:(DE-2719)2810538 |b 6 |u dzne |
| 700 | 1 | _ | |a Groppa, Sergiu |b 7 |
| 700 | 1 | _ | |a Roebroeck, Alard |b 8 |
| 773 | 1 | 8 | |a 10.1016/j.neuroscience.2018.03.048 |b : Elsevier BV, 2019-04-01 |p 17-26 |3 journal-article |2 Crossref |t Neuroscience |v 403 |y 2019 |x 0306-4522 |
| 773 | _ | _ | |a 10.1016/j.neuroscience.2018.03.048 |g Vol. 403, p. 17 - 26 |0 PERI:(DE-600)1498423-4 |q 403<17 - 26 |p 17-26 |t Neuroscience |v 403 |y 2019 |x 0306-4522 |
| 856 | 4 | _ | |y OpenAccess |u https://pub.dzne.de/record/140615/files/DZNE-2020-06937.pdf |
| 856 | 4 | _ | |y OpenAccess |x pdfa |u https://pub.dzne.de/record/140615/files/DZNE-2020-06937.pdf?subformat=pdfa |
| 909 | C | O | |o oai:pub.dzne.de:140615 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 5 |6 P:(DE-2719)2810559 |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 6 |6 P:(DE-2719)2810538 |
| 913 | 1 | _ | |a DE-HGF |b Gesundheit |l Erkrankungen des Nervensystems |1 G:(DE-HGF)POF3-340 |0 G:(DE-HGF)POF3-345 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-300 |4 G:(DE-HGF)POF |v Population Studies and Genetics |x 0 |
| 914 | 1 | _ | |y 2019 |
| 915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2022-11-26 |w ger |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NEUROSCIENCE : 2021 |d 2022-11-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-26 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2022-11-26 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2022-11-26 |
| 920 | 1 | _ | |0 I:(DE-2719)1013026 |k AG Stöcker |l MR Physics |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-2719)1013026 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|