000140623 001__ 140623
000140623 005__ 20240321220838.0
000140623 0247_ $$2doi$$a10.1523/JNEUROSCI.2038-18.2019
000140623 0247_ $$2pmid$$apmid:30696732
000140623 0247_ $$2pmc$$apmc:PMC6445989
000140623 0247_ $$2ISSN$$a0270-6474
000140623 0247_ $$2ISSN$$a1529-2401
000140623 0247_ $$2altmetric$$aaltmetric:58447449
000140623 037__ $$aDZNE-2020-06945
000140623 041__ $$aEnglish
000140623 082__ $$a610
000140623 1001_ $$0P:(DE-HGF)0$$aMüller, Tanja M$$b0
000140623 245__ $$aA Multiple Piccolino-RIBEYE Interaction Supports Plate-Shaped Synaptic Ribbons in Retinal Neurons.
000140623 260__ $$aWashington, DC$$bSoc.57413$$c2019
000140623 264_1 $$2Crossref$$3online$$bSociety for Neuroscience$$c2019-01-29
000140623 264_1 $$2Crossref$$3print$$bSociety for Neuroscience$$c2019-04-03
000140623 3367_ $$2DRIVER$$aarticle
000140623 3367_ $$2DataCite$$aOutput Types/Journal article
000140623 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1677247124_7994
000140623 3367_ $$2BibTeX$$aARTICLE
000140623 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000140623 3367_ $$00$$2EndNote$$aJournal Article
000140623 520__ $$aActive zones at chemical synapses are highly specialized sites for the regulated release of neurotransmitters. Despite a high degree of active zone protein conservation in vertebrates, every type of chemical synapse expresses a given set of protein isoforms and splice variants adapted to the demands on neurotransmitter release. So far, we know little about how specific active zone proteins contribute to the structural and functional diversity of active zones. In this study, we explored the nanodomain organization of ribbon-type active zones by addressing the significance of Piccolino, the ribbon synapse-specific splice variant of Piccolo, for shaping the ribbon structure. We followed up on previous results, which indicated that rod photoreceptor synaptic ribbons lose their structural integrity in a knockdown of Piccolino. Here, we demonstrate an interaction between Piccolino and the major ribbon component RIBEYE that supports plate-shaped synaptic ribbons in retinal neurons. In a detailed ultrastructural analysis of three different types of retinal ribbon synapses in Piccolo/Piccolino-deficient male and female rats, we show that the absence of Piccolino destabilizes the superstructure of plate-shaped synaptic ribbons, although with variable manifestation in the cell types examined. Our analysis illustrates how the expression of a specific active zone protein splice variant (e.g., Piccolino) contributes to structural diversity of vertebrate active zones.SIGNIFICANCE STATEMENT Retinal ribbon synapses are a specialized type of chemical synapse adapted for the regulated fast and tonic release of neurotransmitter. The hallmark of retinal ribbon synapses is the plate-shaped synaptic ribbon, which extends from the release site into the terminals' cytoplasm and tethers hundreds of synaptic vesicles. Here, we show that Piccolino, the synaptic ribbon specific splice variant of Piccolo, interacts with RIBEYE, the main component of synaptic ribbons. This interaction occurs via several PxDLS-like motifs located at the C terminus of Piccolino, which can connect multiple RIBEYE molecules. Loss of Piccolino disrupts the characteristic plate-shaped structure of synaptic ribbons, indicating a role of Piccolino in synaptic ribbon assembly.
000140623 536__ $$0G:(DE-HGF)POF3-341$$a341 - Molecular Signaling (POF3-341)$$cPOF3-341$$fPOF III$$x0
000140623 542__ $$2Crossref$$i2019-10-03$$uhttps://creativecommons.org/licenses/by-nc-sa/4.0/
000140623 588__ $$aDataset connected to CrossRef, PubMed,
000140623 650_2 $$2MeSH$$aAlcohol Oxidoreductases: chemistry
000140623 650_2 $$2MeSH$$aAlcohol Oxidoreductases: genetics
000140623 650_2 $$2MeSH$$aAlcohol Oxidoreductases: metabolism
000140623 650_2 $$2MeSH$$aAnimals
000140623 650_2 $$2MeSH$$aCo-Repressor Proteins: chemistry
000140623 650_2 $$2MeSH$$aCo-Repressor Proteins: genetics
000140623 650_2 $$2MeSH$$aCo-Repressor Proteins: metabolism
000140623 650_2 $$2MeSH$$aCytoskeletal Proteins: chemistry
000140623 650_2 $$2MeSH$$aCytoskeletal Proteins: genetics
000140623 650_2 $$2MeSH$$aCytoskeletal Proteins: metabolism
000140623 650_2 $$2MeSH$$aHEK293 Cells
000140623 650_2 $$2MeSH$$aHumans
000140623 650_2 $$2MeSH$$aMice
000140623 650_2 $$2MeSH$$aMice, Inbred C57BL
000140623 650_2 $$2MeSH$$aMice, Transgenic
000140623 650_2 $$2MeSH$$aNIH 3T3 Cells
000140623 650_2 $$2MeSH$$aNeuropeptides: chemistry
000140623 650_2 $$2MeSH$$aNeuropeptides: genetics
000140623 650_2 $$2MeSH$$aNeuropeptides: metabolism
000140623 650_2 $$2MeSH$$aProtein Binding: physiology
000140623 650_2 $$2MeSH$$aProtein Structure, Secondary
000140623 650_2 $$2MeSH$$aProtein Structure, Tertiary
000140623 650_2 $$2MeSH$$aRats
000140623 650_2 $$2MeSH$$aRats, Sprague-Dawley
000140623 650_2 $$2MeSH$$aRats, Transgenic
000140623 650_2 $$2MeSH$$aRetinal Neurons: metabolism
000140623 650_2 $$2MeSH$$aRetinal Neurons: ultrastructure
000140623 650_2 $$2MeSH$$aSynapses: genetics
000140623 650_2 $$2MeSH$$aSynapses: metabolism
000140623 650_2 $$2MeSH$$aSynapses: ultrastructure
000140623 7001_ $$0P:(DE-HGF)0$$aGierke, Kaspar$$b1
000140623 7001_ $$0P:(DE-HGF)0$$aJoachimsthaler, Anneka$$b2
000140623 7001_ $$0P:(DE-HGF)0$$aSticht, Heinrich$$b3
000140623 7001_ $$0P:(DE-HGF)0$$aIzsvák, Zsuzsanna$$b4
000140623 7001_ $$0P:(DE-HGF)0$$aHamra, F Kent$$b5
000140623 7001_ $$0P:(DE-HGF)0$$aFejtová, Anna$$b6
000140623 7001_ $$0P:(DE-2719)2810967$$aAckermann, Frauke$$b7$$udzne
000140623 7001_ $$0P:(DE-2719)2810922$$aGarner, Craig C$$b8$$udzne
000140623 7001_ $$0P:(DE-HGF)0$$aKremers, Jan$$b9
000140623 7001_ $$0P:(DE-HGF)0$$aBrandstätter, Johann H$$b10
000140623 7001_ $$0P:(DE-HGF)0$$aRegus-Leidig, Hanna$$b11$$eCorresponding author
000140623 77318 $$2Crossref$$3journal-article$$a10.1523/jneurosci.2038-18.2019$$bSociety for Neuroscience$$d2019-01-29$$n14$$p2606-2619$$tThe Journal of Neuroscience$$v39$$x0270-6474$$y2019
000140623 773__ $$0PERI:(DE-600)1475274-8$$a10.1523/JNEUROSCI.2038-18.2019$$gVol. 39, no. 14, p. 2606 - 2619$$n14$$p2606-2619$$q39:14<2606 - 2619$$tThe journal of neuroscience$$v39$$x0270-6474$$y2019
000140623 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC6445989
000140623 909CO $$ooai:pub.dzne.de:140623$$pVDB
000140623 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810967$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b7$$kDZNE
000140623 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810922$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b8$$kDZNE
000140623 9131_ $$0G:(DE-HGF)POF3-341$$1G:(DE-HGF)POF3-340$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lErkrankungen des Nervensystems$$vMolecular Signaling$$x0
000140623 9141_ $$y2019
000140623 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-13
000140623 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-13
000140623 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-13
000140623 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-13
000140623 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-13
000140623 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-13
000140623 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NEUROSCI : 2021$$d2022-11-13
000140623 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-13
000140623 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-13
000140623 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ NEUROSCI : 2021$$d2022-11-13
000140623 9201_ $$0I:(DE-2719)1810001$$kAG Garner$$lSynaptopathy$$x0
000140623 9201_ $$0I:(DE-2719)1813004$$kAG Ackermann$$lAstrocyte - Synapse Interaction$$x1
000140623 980__ $$ajournal
000140623 980__ $$aVDB
000140623 980__ $$aI:(DE-2719)1810001
000140623 980__ $$aI:(DE-2719)1813004
000140623 980__ $$aUNRESTRICTED
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.15252/embr.201540434
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3389/fnsyn.2017.00014
000140623 999C5 $$1Cases-Langhoff$$2Crossref$$oCases-Langhoff 1996$$y1996
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1523/JNEUROSCI.4240-11.2012
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/cne.1344
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0896-6273(03)00086-2
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0896-6273(00)80883-1
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1074/jbc.M210792200
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.neuron.2010.10.027
000140623 999C5 $$2Crossref$$uFrishman LJ (2006) Origins of the electroretinogram. In: Principles and practice of clinical electrophysiology of vision ( Heckenlively JR , Arden GB , eds), pp 139–183. London: MIT.
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3389/fncel.2014.00060
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/elps.1150181505
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3389/fnsyn.2015.00019
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s10633-009-9194-5
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.15252/embj.201488796
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1113/JP271826
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature03418
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1074/jbc.M212287200
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1074/jbc.M000254200
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-vision-082114-035709
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/bies.1118
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1523/JNEUROSCI.1964-08.2008
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nrn2924
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1101/405985
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s00441-006-0276-3
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1002307107
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1093/emboj/cdg283
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.heares.2015.04.003
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1113/JP274885
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/jcc.20084
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1748-1716.2011.02355.x
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0070373
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3389/fncel.2014.00259
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-neuro-061010-113705
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0896-6273(00)00159-8
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0896-6273(03)00207-1
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1523/JNEUROSCI.2878-16.2017
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1167/iovs.08-2758
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0167535
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1083/jcb.200408157
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1523/JNEUROSCI.0752-12.2012
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0120093
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1523/JNEUROSCI.1835-11.2011
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/emboj.2013.27
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1083/jcb.147.1.151
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s00441-014-2102-7
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s12035-009-8058-z
000140623 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1152/physiol.00014.2004