001     140623
005     20240321220838.0
024 7 _ |a 10.1523/JNEUROSCI.2038-18.2019
|2 doi
024 7 _ |a pmid:30696732
|2 pmid
024 7 _ |a pmc:PMC6445989
|2 pmc
024 7 _ |a 0270-6474
|2 ISSN
024 7 _ |a 1529-2401
|2 ISSN
024 7 _ |a altmetric:58447449
|2 altmetric
037 _ _ |a DZNE-2020-06945
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Müller, Tanja M
|0 P:(DE-HGF)0
|b 0
245 _ _ |a A Multiple Piccolino-RIBEYE Interaction Supports Plate-Shaped Synaptic Ribbons in Retinal Neurons.
260 _ _ |a Washington, DC
|c 2019
|b Soc.57413
264 _ 1 |3 online
|2 Crossref
|b Society for Neuroscience
|c 2019-01-29
264 _ 1 |3 print
|2 Crossref
|b Society for Neuroscience
|c 2019-04-03
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1677247124_7994
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Active zones at chemical synapses are highly specialized sites for the regulated release of neurotransmitters. Despite a high degree of active zone protein conservation in vertebrates, every type of chemical synapse expresses a given set of protein isoforms and splice variants adapted to the demands on neurotransmitter release. So far, we know little about how specific active zone proteins contribute to the structural and functional diversity of active zones. In this study, we explored the nanodomain organization of ribbon-type active zones by addressing the significance of Piccolino, the ribbon synapse-specific splice variant of Piccolo, for shaping the ribbon structure. We followed up on previous results, which indicated that rod photoreceptor synaptic ribbons lose their structural integrity in a knockdown of Piccolino. Here, we demonstrate an interaction between Piccolino and the major ribbon component RIBEYE that supports plate-shaped synaptic ribbons in retinal neurons. In a detailed ultrastructural analysis of three different types of retinal ribbon synapses in Piccolo/Piccolino-deficient male and female rats, we show that the absence of Piccolino destabilizes the superstructure of plate-shaped synaptic ribbons, although with variable manifestation in the cell types examined. Our analysis illustrates how the expression of a specific active zone protein splice variant (e.g., Piccolino) contributes to structural diversity of vertebrate active zones.SIGNIFICANCE STATEMENT Retinal ribbon synapses are a specialized type of chemical synapse adapted for the regulated fast and tonic release of neurotransmitter. The hallmark of retinal ribbon synapses is the plate-shaped synaptic ribbon, which extends from the release site into the terminals' cytoplasm and tethers hundreds of synaptic vesicles. Here, we show that Piccolino, the synaptic ribbon specific splice variant of Piccolo, interacts with RIBEYE, the main component of synaptic ribbons. This interaction occurs via several PxDLS-like motifs located at the C terminus of Piccolino, which can connect multiple RIBEYE molecules. Loss of Piccolino disrupts the characteristic plate-shaped structure of synaptic ribbons, indicating a role of Piccolino in synaptic ribbon assembly.
536 _ _ |a 341 - Molecular Signaling (POF3-341)
|0 G:(DE-HGF)POF3-341
|c POF3-341
|f POF III
|x 0
542 _ _ |i 2019-10-03
|2 Crossref
|u https://creativecommons.org/licenses/by-nc-sa/4.0/
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 2 |a Alcohol Oxidoreductases: chemistry
|2 MeSH
650 _ 2 |a Alcohol Oxidoreductases: genetics
|2 MeSH
650 _ 2 |a Alcohol Oxidoreductases: metabolism
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Co-Repressor Proteins: chemistry
|2 MeSH
650 _ 2 |a Co-Repressor Proteins: genetics
|2 MeSH
650 _ 2 |a Co-Repressor Proteins: metabolism
|2 MeSH
650 _ 2 |a Cytoskeletal Proteins: chemistry
|2 MeSH
650 _ 2 |a Cytoskeletal Proteins: genetics
|2 MeSH
650 _ 2 |a Cytoskeletal Proteins: metabolism
|2 MeSH
650 _ 2 |a HEK293 Cells
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Mice, Inbred C57BL
|2 MeSH
650 _ 2 |a Mice, Transgenic
|2 MeSH
650 _ 2 |a NIH 3T3 Cells
|2 MeSH
650 _ 2 |a Neuropeptides: chemistry
|2 MeSH
650 _ 2 |a Neuropeptides: genetics
|2 MeSH
650 _ 2 |a Neuropeptides: metabolism
|2 MeSH
650 _ 2 |a Protein Binding: physiology
|2 MeSH
650 _ 2 |a Protein Structure, Secondary
|2 MeSH
650 _ 2 |a Protein Structure, Tertiary
|2 MeSH
650 _ 2 |a Rats
|2 MeSH
650 _ 2 |a Rats, Sprague-Dawley
|2 MeSH
650 _ 2 |a Rats, Transgenic
|2 MeSH
650 _ 2 |a Retinal Neurons: metabolism
|2 MeSH
650 _ 2 |a Retinal Neurons: ultrastructure
|2 MeSH
650 _ 2 |a Synapses: genetics
|2 MeSH
650 _ 2 |a Synapses: metabolism
|2 MeSH
650 _ 2 |a Synapses: ultrastructure
|2 MeSH
700 1 _ |a Gierke, Kaspar
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Joachimsthaler, Anneka
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sticht, Heinrich
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Izsvák, Zsuzsanna
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Hamra, F Kent
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Fejtová, Anna
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Ackermann, Frauke
|0 P:(DE-2719)2810967
|b 7
|u dzne
700 1 _ |a Garner, Craig C
|0 P:(DE-2719)2810922
|b 8
|u dzne
700 1 _ |a Kremers, Jan
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Brandstätter, Johann H
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Regus-Leidig, Hanna
|0 P:(DE-HGF)0
|b 11
|e Corresponding author
773 1 8 |a 10.1523/jneurosci.2038-18.2019
|b Society for Neuroscience
|d 2019-01-29
|n 14
|p 2606-2619
|3 journal-article
|2 Crossref
|t The Journal of Neuroscience
|v 39
|y 2019
|x 0270-6474
773 _ _ |a 10.1523/JNEUROSCI.2038-18.2019
|g Vol. 39, no. 14, p. 2606 - 2619
|0 PERI:(DE-600)1475274-8
|n 14
|q 39:14<2606 - 2619
|p 2606-2619
|t The journal of neuroscience
|v 39
|y 2019
|x 0270-6474
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6445989
909 C O |p VDB
|o oai:pub.dzne.de:140623
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)2810967
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)2810922
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-341
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Molecular Signaling
|x 0
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NEUROSCI : 2021
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-13
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-13
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J NEUROSCI : 2021
|d 2022-11-13
920 1 _ |0 I:(DE-2719)1810001
|k AG Garner
|l Synaptopathy
|x 0
920 1 _ |0 I:(DE-2719)1813004
|k AG Ackermann
|l Astrocyte - Synapse Interaction
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1810001
980 _ _ |a I:(DE-2719)1813004
980 _ _ |a UNRESTRICTED
999 C 5 |a 10.15252/embr.201540434
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.3389/fnsyn.2017.00014
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 Cases-Langhoff
|y 1996
|2 Crossref
|o Cases-Langhoff 1996
999 C 5 |a 10.1523/JNEUROSCI.4240-11.2012
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/cne.1344
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0896-6273(03)00086-2
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0896-6273(00)80883-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1074/jbc.M210792200
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.neuron.2010.10.027
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |2 Crossref
|u Frishman LJ (2006) Origins of the electroretinogram. In: Principles and practice of clinical electrophysiology of vision ( Heckenlively JR , Arden GB , eds), pp 139–183. London: MIT.
999 C 5 |a 10.3389/fncel.2014.00060
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/elps.1150181505
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.3389/fnsyn.2015.00019
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s10633-009-9194-5
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.15252/embj.201488796
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1113/JP271826
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature03418
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1074/jbc.M212287200
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1074/jbc.M000254200
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1146/annurev-vision-082114-035709
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/bies.1118
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/JNEUROSCI.1964-08.2008
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nrn2924
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1101/405985
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s00441-006-0276-3
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1073/pnas.1002307107
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1093/emboj/cdg283
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.heares.2015.04.003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1113/JP274885
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/jcc.20084
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1111/j.1748-1716.2011.02355.x
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1371/journal.pone.0070373
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.3389/fncel.2014.00259
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1146/annurev-neuro-061010-113705
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0896-6273(00)00159-8
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0896-6273(03)00207-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/JNEUROSCI.2878-16.2017
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1167/iovs.08-2758
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1371/journal.pone.0167535
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1083/jcb.200408157
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/JNEUROSCI.0752-12.2012
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1371/journal.pone.0120093
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/JNEUROSCI.1835-11.2011
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/emboj.2013.27
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1083/jcb.147.1.151
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s00441-014-2102-7
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s12035-009-8058-z
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1152/physiol.00014.2004
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21