001     140630
005     20240321220838.0
024 7 _ |a 10.1016/j.stemcr.2019.02.009
|2 doi
024 7 _ |a pmid:30905740
|2 pmid
024 7 _ |a pmc:PMC6450435
|2 pmc
024 7 _ |a altmetric:57435609
|2 altmetric
037 _ _ |a DZNE-2020-06952
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Leiter, Odette
|0 P:(DE-2719)9000937
|b 0
|e First author
245 _ _ |a Exercise-Induced Activated Platelets Increase Adult Hippocampal Precursor Proliferation and Promote Neuronal Differentiation.
260 _ _ |a [New York, NY]
|c 2019
|b Elsevier
264 _ 1 |3 print
|2 Crossref
|b Elsevier BV
|c 2019-04-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1710159793_27995
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Physical activity is a strong positive physiological modulator of adult neurogenesis in the hippocampal dentate gyrus. Although the underlying regulatory mechanisms are still unknown, systemic processes must be involved. Here we show that platelets are activated after acute periods of running, and that activated platelets promote neurogenesis, an effect that is likely mediated by platelet factor 4. Ex vivo, the beneficial effects of activated platelets and platelet factor 4 on neural precursor cells were dentate gyrus specific and not observed in the subventricular zone. Moreover, the depletion of circulating platelets in mice abolished the running-induced increase in precursor cell proliferation in the dentate gyrus following exercise. These findings demonstrate that platelets and their released factors can modulate adult neural precursor cells under physiological conditions and provide an intriguing link between running-induced platelet activation and the modulation of neurogenesis after exercise.
536 _ _ |a 342 - Disease Mechanisms and Model Systems (POF3-342)
|0 G:(DE-HGF)POF3-342
|c POF3-342
|f POF III
|x 0
542 _ _ |i 2019-04-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
542 _ _ |i 2019-02-19
|2 Crossref
|u http://creativecommons.org/licenses/by-nc-nd/4.0/
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Blood Platelets: metabolism
|2 MeSH
650 _ 2 |a Cell Proliferation
|2 MeSH
650 _ 2 |a Dentate Gyrus: metabolism
|2 MeSH
650 _ 2 |a Hippocampus: metabolism
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Neural Stem Cells: cytology
|2 MeSH
650 _ 2 |a Neural Stem Cells: metabolism
|2 MeSH
650 _ 2 |a Neurogenesis
|2 MeSH
650 _ 2 |a Neurons: cytology
|2 MeSH
650 _ 2 |a Neurons: metabolism
|2 MeSH
650 _ 2 |a Platelet Activation
|2 MeSH
650 _ 2 |a Proteome
|2 MeSH
700 1 _ |a Seidemann, Suse
|b 1
700 1 _ |a Overall, Rupert W
|0 P:(DE-2719)2812530
|b 2
700 1 _ |a Ramasz, Beáta
|b 3
700 1 _ |a Rund, Nicole
|0 P:(DE-2719)2811674
|b 4
700 1 _ |a Schallenberg, Sonja
|b 5
700 1 _ |a Grinenko, Tatyana
|b 6
700 1 _ |a Wielockx, Ben
|b 7
700 1 _ |a Kempermann, Gerd
|0 P:(DE-2719)2000011
|b 8
700 1 _ |a Walker, Tara
|0 P:(DE-2719)9000335
|b 9
|e Last author
773 1 8 |a 10.1016/j.stemcr.2019.02.009
|b : Elsevier BV, 2019-04-01
|n 4
|p 667-679
|3 journal-article
|2 Crossref
|t Stem Cell Reports
|v 12
|y 2019
|x 2213-6711
773 _ _ |a 10.1016/j.stemcr.2019.02.009
|g Vol. 12, no. 4, p. 667 - 679
|0 PERI:(DE-600)2720528-9
|n 4
|q 12:4<667 - 679
|p 667-679
|t Stem cell reports
|v 12
|y 2019
|x 2213-6711
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/140630/files/DZNE-2020-06952.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/140630/files/DZNE-2020-06952.pdf?subformat=pdfa
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6450435
909 C O |o oai:pub.dzne.de:140630
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9000937
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2812530
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2811674
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)2000011
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 9
|6 P:(DE-2719)9000335
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-342
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms and Model Systems
|x 0
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-17
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b STEM CELL REP : 2021
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-26T13:08:40Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-26T13:08:40Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-17
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2021-01-26T13:08:40Z
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b STEM CELL REP : 2021
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-17
920 1 _ |0 I:(DE-2719)6000013
|k Dresden common
|l Dresden common
|x 0
920 1 _ |0 I:(DE-2719)1710001
|k AG Kempermann
|l Adult Neurogenesis
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)6000013
980 _ _ |a I:(DE-2719)1710001
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21