Home > Publications Database > MiR-135a-5p Is Critical for Exercise-Induced Adult Neurogenesis. > print |
001 | 140739 | ||
005 | 20240321220851.0 | ||
024 | 7 | _ | |a 10.1016/j.stemcr.2019.04.020 |2 doi |
024 | 7 | _ | |a pmid:31130358 |2 pmid |
024 | 7 | _ | |a pmc:PMC6565832 |2 pmc |
024 | 7 | _ | |a altmetric:60932116 |2 altmetric |
037 | _ | _ | |a DZNE-2020-07061 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Pons-Espinal, Meritxell |b 0 |
245 | _ | _ | |a MiR-135a-5p Is Critical for Exercise-Induced Adult Neurogenesis. |
260 | _ | _ | |a [New York, NY] |c 2019 |b Elsevier |
264 | _ | 1 | |3 print |2 Crossref |b Elsevier BV |c 2019-06-01 |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1709908595_26559 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Physical exercise stimulates adult hippocampal neurogenesis and is considered a relevant strategy for preventing age-related cognitive decline in humans. The underlying mechanisms remains controversial. Here, we show that exercise increases proliferation of neural precursor cells (NPCs) of the mouse dentate gyrus (DG) via downregulation of microRNA 135a-5p (miR-135a). MiR-135a inhibition stimulates NPC proliferation leading to increased neurogenesis, but not astrogliogenesis, in DG of resting mice, and intriguingly it re-activates NPC proliferation in aged mice. We identify 17 proteins (11 putative targets) modulated by miR-135 in NPCs. Of note, inositol 1,4,5-trisphosphate (IP3) receptor 1 and inositol polyphosphate-4-phosphatase type I are among the modulated proteins, suggesting that IP3 signaling may act downstream miR-135. miR-135 is the first noncoding RNA essential modulator of the brain's response to physical exercise. Prospectively, the miR-135-IP3 axis might represent a novel target of therapeutic intervention to prevent pathological brain aging. |
536 | _ | _ | |a 342 - Disease Mechanisms and Model Systems (POF3-342) |0 G:(DE-HGF)POF3-342 |c POF3-342 |f POF III |x 0 |
542 | _ | _ | |i 2019-06-01 |2 Crossref |u https://www.elsevier.com/tdm/userlicense/1.0/ |
542 | _ | _ | |i 2019-04-25 |2 Crossref |u http://creativecommons.org/licenses/by-nc-nd/4.0/ |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
650 | _ | 2 | |a Adult Stem Cells: metabolism |2 MeSH |
650 | _ | 2 | |a Aging: metabolism |2 MeSH |
650 | _ | 2 | |a Animals |2 MeSH |
650 | _ | 2 | |a Cell Proliferation |2 MeSH |
650 | _ | 2 | |a Gene Expression Regulation |2 MeSH |
650 | _ | 2 | |a Humans |2 MeSH |
650 | _ | 2 | |a Intercellular Signaling Peptides and Proteins: biosynthesis |2 MeSH |
650 | _ | 2 | |a Intracellular Signaling Peptides and Proteins: biosynthesis |2 MeSH |
650 | _ | 2 | |a Lateral Ventricles: cytology |2 MeSH |
650 | _ | 2 | |a Lateral Ventricles: metabolism |2 MeSH |
650 | _ | 2 | |a Mice |2 MeSH |
650 | _ | 2 | |a Mice, Knockout |2 MeSH |
650 | _ | 2 | |a MicroRNAs: biosynthesis |2 MeSH |
650 | _ | 2 | |a Neural Stem Cells: metabolism |2 MeSH |
650 | _ | 2 | |a Neurogenesis |2 MeSH |
650 | _ | 2 | |a Physical Conditioning, Animal |2 MeSH |
650 | _ | 2 | |a Stem Cell Niche |2 MeSH |
650 | _ | 2 | |a p38 Mitogen-Activated Protein Kinases: biosynthesis |2 MeSH |
700 | 1 | _ | |a Gasperini, Caterina |b 1 |
700 | 1 | _ | |a Marzi, Matteo J |b 2 |
700 | 1 | _ | |a Braccia, Clarissa |b 3 |
700 | 1 | _ | |a Armirotti, Andrea |b 4 |
700 | 1 | _ | |a Pötzsch, Alexandra |0 P:(DE-2719)2810879 |b 5 |u dzne |
700 | 1 | _ | |a Walker, Tara L |0 P:(DE-2719)9000335 |b 6 |u dzne |
700 | 1 | _ | |a Fabel, Klaus |0 P:(DE-2719)2000006 |b 7 |u dzne |
700 | 1 | _ | |a Nicassio, Francesco |b 8 |
700 | 1 | _ | |a Kempermann, Gerd |0 P:(DE-2719)2000011 |b 9 |u dzne |
700 | 1 | _ | |a De Pietri Tonelli, Davide |0 P:(DE-HGF)0 |b 10 |e Corresponding author |
773 | 1 | 8 | |a 10.1016/j.stemcr.2019.04.020 |b : Elsevier BV, 2019-06-01 |n 6 |p 1298-1312 |3 journal-article |2 Crossref |t Stem Cell Reports |v 12 |y 2019 |x 2213-6711 |
773 | _ | _ | |a 10.1016/j.stemcr.2019.04.020 |g Vol. 12, no. 6, p. 1298 - 1312 |0 PERI:(DE-600)2720528-9 |n 6 |q 12:6<1298 - 1312 |p 1298-1312 |t Stem cell reports |v 12 |y 2019 |x 2213-6711 |
856 | 4 | _ | |y OpenAccess |u https://pub.dzne.de/record/140739/files/DZNE-2020-07061.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://pub.dzne.de/record/140739/files/DZNE-2020-07061.pdf?subformat=pdfa |
856 | 7 | _ | |2 Pubmed Central |u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6565832 |
909 | C | O | |o oai:pub.dzne.de:140739 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 5 |6 P:(DE-2719)2810879 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 6 |6 P:(DE-2719)9000335 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 7 |6 P:(DE-2719)2000006 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 9 |6 P:(DE-2719)2000011 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Erkrankungen des Nervensystems |1 G:(DE-HGF)POF3-340 |0 G:(DE-HGF)POF3-342 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-300 |4 G:(DE-HGF)POF |v Disease Mechanisms and Model Systems |x 0 |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-17 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b STEM CELL REP : 2021 |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-01-26T13:08:40Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-01-26T13:08:40Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-17 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2021-01-26T13:08:40Z |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b STEM CELL REP : 2021 |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-17 |
920 | 1 | _ | |0 I:(DE-2719)1710001 |k AG Kempermann |l Adult Neurogenesis |x 0 |
920 | 1 | _ | |0 I:(DE-2719)6000013 |k Dresden common |l Dresden common |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-2719)1710001 |
980 | _ | _ | |a I:(DE-2719)6000013 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|