000140879 001__ 140879
000140879 005__ 20240321220908.0
000140879 0247_ $$2ISSN$$a0367-004x
000140879 0247_ $$2doi$$a10.1007/s00415-019-09396-9
000140879 0247_ $$2pmid$$apmid:31155683
000140879 0247_ $$2ISSN$$a0012-1037
000140879 0247_ $$2ISSN$$a0340-5354
000140879 0247_ $$2ISSN$$a0939-1517
000140879 0247_ $$2ISSN$$a1432-1459
000140879 0247_ $$2ISSN$$a1619-800X
000140879 0247_ $$2altmetric$$aaltmetric:61525411
000140879 0247_ $$2ISSN$$a0367-004X
000140879 037__ $$aDZNE-2020-07201
000140879 041__ $$aEnglish
000140879 082__ $$a610
000140879 1001_ $$0P:(DE-HGF)0$$aGalazky, I.$$b0
000140879 245__ $$aNeuronal spiking in the pedunculopontine nucleus in progressive supranuclear palsy and in idiopathic Parkinson's disease.
000140879 260__ $$aBerlin$$bSpringer73057$$c2019
000140879 264_1 $$2Crossref$$3online$$bSpringer Science and Business Media LLC$$c2019-06-03
000140879 264_1 $$2Crossref$$3print$$bSpringer Science and Business Media LLC$$c2019-09-01
000140879 3367_ $$2DRIVER$$aarticle
000140879 3367_ $$2DataCite$$aOutput Types/Journal article
000140879 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1709726922_11502
000140879 3367_ $$2BibTeX$$aARTICLE
000140879 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000140879 3367_ $$00$$2EndNote$$aJournal Article
000140879 520__ $$aThe pedunculopontine nucleus (PPN) is engaged in posture and gait control, and neuronal degeneration in the PPN has been associated with Parkinsonian disorders. Clinical outcomes of deep brain stimulation of the PPN in idiopathic Parkinson's disease (IPD) and progressive supranuclear palsy (PSP) differ, and we investigated whether the PPN is differentially affected in these conditions. We had the rare opportunity to record continuous electrophysiological data intraoperatively in 30 s blocks from single microelectrode contacts implanted in the PPN in six PSP patients and three IPD patients during rest, passive movement, and active movement. Neuronal spikes were sorted according to shape using a wavelet-based clustering approach to enable comparisons between individual neuronal firing rates in the two disease states. The action potential widths showed a bimodal distribution consistent with previous findings, suggesting spikes from noncholinergic (likely glutamatergic) and cholinergic neurons. A higher PPN spiking rate of narrow action potentials was observed in the PSP than in the IPD patients when pooled across all three conditions (Wilcoxon rank sum test: p = 0.0141). No correlation was found between firing rate and disease severity or duration. The firing rates were higher during passive movement than rest and active movement in both groups, but the differences between conditions were not significant. PSP and IPD are believed to represent distinct disease processes, and our findings that the neuronal firing rates differ according to disease state support the proposal that pathological processes directly involving the PPN may be more pronounced in PSP than IPD.
000140879 536__ $$0G:(DE-HGF)POF3-344$$a344 - Clinical and Health Care Research (POF3-344)$$cPOF3-344$$fPOF III$$x0
000140879 542__ $$2Crossref$$i2019-06-03$$uhttp://www.springer.com/tdm
000140879 542__ $$2Crossref$$i2019-06-03$$uhttp://www.springer.com/tdm
000140879 588__ $$aDataset connected to CrossRef, PubMed,
000140879 650_2 $$2MeSH$$aAction Potentials: physiology
000140879 650_2 $$2MeSH$$aAged
000140879 650_2 $$2MeSH$$aCohort Studies
000140879 650_2 $$2MeSH$$aElectrodes, Implanted
000140879 650_2 $$2MeSH$$aFemale
000140879 650_2 $$2MeSH$$aHumans
000140879 650_2 $$2MeSH$$aIntraoperative Neurophysiological Monitoring: instrumentation
000140879 650_2 $$2MeSH$$aIntraoperative Neurophysiological Monitoring: methods
000140879 650_2 $$2MeSH$$aMale
000140879 650_2 $$2MeSH$$aMiddle Aged
000140879 650_2 $$2MeSH$$aNeurons: physiology
000140879 650_2 $$2MeSH$$aParkinson Disease: diagnosis
000140879 650_2 $$2MeSH$$aParkinson Disease: physiopathology
000140879 650_2 $$2MeSH$$aParkinson Disease: surgery
000140879 650_2 $$2MeSH$$aPedunculopontine Tegmental Nucleus: physiology
000140879 650_2 $$2MeSH$$aSupranuclear Palsy, Progressive: diagnosis
000140879 650_2 $$2MeSH$$aSupranuclear Palsy, Progressive: physiopathology
000140879 650_2 $$2MeSH$$aSupranuclear Palsy, Progressive: surgery
000140879 7001_ $$0P:(DE-HGF)0$$aKaufmann, J.$$b1
000140879 7001_ $$0P:(DE-HGF)0$$aVoges, J.$$b2
000140879 7001_ $$0P:(DE-2719)2000009$$aHinrichs, H.$$b3$$udzne
000140879 7001_ $$0P:(DE-2719)2260426$$aHeinze, H-J$$b4$$udzne
000140879 7001_ $$0P:(DE-HGF)0$$aSweeney-Reed, C. M.$$b5$$eCorresponding author
000140879 77318 $$2Crossref$$3journal-article$$a10.1007/s00415-019-09396-9$$bSpringer Science and Business Media LLC$$d2019-06-03$$n9$$p2244-2251$$tJournal of Neurology$$v266$$x0340-5354$$y2019
000140879 773__ $$0PERI:(DE-600)1421299-7$$a10.1007/s00415-019-09396-9$$gVol. 266, no. 9, p. 2244 - 2251$$n9$$p2244-2251$$q266:9<2244 - 2251$$tJournal of neurology$$v266$$x0340-5354$$y2019
000140879 8564_ $$uhttps://pub.dzne.de/record/140879/files/DZNE-2020-07201_Restricted.pdf
000140879 8564_ $$uhttps://pub.dzne.de/record/140879/files/DZNE-2020-07201_Restricted.pdf?subformat=pdfa$$xpdfa
000140879 909CO $$ooai:pub.dzne.de:140879$$pVDB
000140879 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2000009$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000140879 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2260426$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b4$$kDZNE
000140879 9131_ $$0G:(DE-HGF)POF3-344$$1G:(DE-HGF)POF3-340$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lErkrankungen des Nervensystems$$vClinical and Health Care Research$$x0
000140879 9141_ $$y2019
000140879 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-12$$wger
000140879 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000140879 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000140879 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000140879 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000140879 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-12
000140879 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-12
000140879 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NEUROL : 2021$$d2022-11-12
000140879 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000140879 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000140879 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ NEUROL : 2021$$d2022-11-12
000140879 9201_ $$0I:(DE-2719)7000000$$kU Clinical Researchers - Magdeburg$$lU Clinical Researchers - Magdeburg$$x0
000140879 980__ $$ajournal
000140879 980__ $$aVDB
000140879 980__ $$aI:(DE-2719)7000000
000140879 980__ $$aUNRESTRICTED
000140879 999C5 $$1F Mori$$2Crossref$$9-- missing cx lookup --$$a10.3389/fnana.2016.00109$$p1 -$$tFront Neuroanat$$uMori F, Okada K, Nomura T, Kobayashi Y (2016) The pedunculopontine tegmental nucleus as a motor and cognitive interface between the cerebellum and basal ganglia. Front Neuroanat 10:1–8. https://doi.org/10.3389/fnana.2016.00109$$v10$$y2016
000140879 999C5 $$1EC Hirsch$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.84.16.5976$$p5976 -$$tProc Natl Acad Sci USA$$uHirsch EC, Graybielt ANNM, Duyckaertst C, Javoy-agid F (1987) Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc Natl Acad Sci USA 84:5976–5980$$v84$$y1987
000140879 999C5 $$1K Jellinger$$2Crossref$$9-- missing cx lookup --$$a10.1136/jnnp.51.4.540$$p540 -$$tJ Neurol Neurosurg Psychiatry$$uJellinger K (1988) The pedunculopontine nucleus in Parkinson’s disease, progressive supranuclear palsy and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 51:540–543$$v51$$y1988
000140879 999C5 $$1PA Pahapill$$2Crossref$$9-- missing cx lookup --$$a10.1093/brain/123.9.1767$$p1767 -$$tBrain$$uPahapill PA, Lozano AM (2000) The pedunculopontine nucleus and Parkinson’s disease. Brain 123:1767–1783$$v123$$y2000
000140879 999C5 $$1L Zrinzo$$2Crossref$$9-- missing cx lookup --$$a10.1097/WNR.0b013e3282638603$$p1631 -$$tNeuroReport$$uZrinzo L, Zrinzo L, Hariz M (2007) The peripeduncular nucleus: a novel target for deep brain stimulation? NeuroReport 8:1631–1633$$v8$$y2007
000140879 999C5 $$1M Weinberger$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00221-008-1349-1$$p165 -$$tExp Brain Res$$uWeinberger M, Hamani C, Hutchison WD et al (2008) Pedunculopontine nucleus microelectrode recordings in movement disorder patients. Exp Brain Res 188:165–174. https://doi.org/10.1007/s00221-008-1349-1$$v188$$y2008
000140879 999C5 $$1M Pötter-Nerger$$2Crossref$$9-- missing cx lookup --$$a10.1002/mds.25677$$p1609 -$$tMov Disord$$uPötter-Nerger M, Volkmann J (2013) Deep brain stimulation for gait and postural symptoms in Parkinson’s disease. Mov Disord 28:1609–1615. https://doi.org/10.1002/mds.25677$$v28$$y2013
000140879 999C5 $$1H Morita$$2Crossref$$9-- missing cx lookup --$$a10.3389/fneur.2014.00243$$tFront Neurol$$uMorita H, Hass CJ, Moro E et al (2014) Pedunculopontine nucleus stimulation: where are we now and what needs to be done to move the field forward? Front Neurol. https://doi.org/10.3389/fneur.2014.00243$$y2014
000140879 999C5 $$1W Thevathasan$$2Crossref$$9-- missing cx lookup --$$a10.1093/brain/aws039$$p1446 -$$tBrain$$uThevathasan W, Cole MH, Graepel CL et al (2012) A spatiotemporal analysis of gait freezing and the impact of pedunculopontine nucleus stimulation. Brain 135:1446–1454. https://doi.org/10.1093/brain/aws039$$v135$$y2012
000140879 999C5 $$1P Mazzone$$2Crossref$$9-- missing cx lookup --$$a10.1097/01.wnr.0000187629.38010.12$$p1877 -$$tNeuroReport$$uMazzone P, Lozano A, Stanzione P et al (2005) Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson’s disease. NeuroReport 16:1877–1881. https://doi.org/10.1097/01.wnr.0000187629.38010.12$$v16$$y2005
000140879 999C5 $$1E Moro$$2Crossref$$9-- missing cx lookup --$$a10.1093/brain/awp261$$p215 -$$tBrain$$uMoro E, Hamani C, Poon YY et al (2010) Unilateral pedunculopontine stimulation improves falls in Parkinson’s disease. Brain 133:215–224. https://doi.org/10.1093/brain/awp261$$v133$$y2010
000140879 999C5 $$1E Scelzo$$2Crossref$$9-- missing cx lookup --$$a10.1136/jnnp-2016-315192$$p613 -$$tJ Neurol Neurosurg Psychiatry$$uScelzo E, Lozano AM, Hamani C et al (2017) Peduncolopontine nucleus stimulation in progressive supranuclear palsy: a randomised trial. J Neurol Neurosurg Psychiatry 88:613–616. https://doi.org/10.1136/jnnp-2016-315192$$v88$$y2017
000140879 999C5 $$1I Galazky$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.parkreldis.2018.02.027$$p81 -$$tPark Relat Disord$$uGalazky I, Kaufmann J, Lorenzl S et al (2018) Deep brain stimulation of the pedunculopontine nucleus for treatment of gait and balance disorder in progressive supranuclear palsy: effects of frequency modulations and clinical outcome. Park Relat Disord 50:81–86. https://doi.org/10.1016/j.parkreldis.2018.02.027$$v50$$y2018
000140879 999C5 $$1M Matsumura$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00415-005-4003-x$$p5 -$$tJ Neurol$$uMatsumura M (2005) The pedunculopontine tegmental nucleus and experimental parkinsonism. J Neurol 252:5–12. https://doi.org/10.1007/s00415-005-4003-x$$v252$$y2005
000140879 999C5 $$1I Litvan$$2Crossref$$9-- missing cx lookup --$$a10.1212/WNL.46.4.922$$p922 -$$tNeurology$$uLitvan I, Agid Y, Jankovic J et al (1996) Accuracy of clinical criteria for the diagnosis of progressive supranuclear palsy (Steele–Richardson–Olszewski syndrome). Neurology 46:922–930$$v46$$y1996
000140879 999C5 $$1A Hughes$$2Crossref$$9-- missing cx lookup --$$a10.1136/jnnp.55.3.181$$p181 -$$tJ Neurol Neurosurg Psychiatry$$uHughes A, Daniel S, Kilford L, Lees A (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184$$v55$$y1992
000140879 999C5 $$1Movement Disorder Society Task Force on Rating Scales for Parkinson’s Disease$$2Crossref$$9-- missing cx lookup --$$a10.1002/mds.10473$$p738 -$$tMov Disord$$uMovement Disorder Society Task Force on Rating Scales for Parkinson’s Disease (2003) The Unified Parkinson’s Disease Rating Scale (UPDRS): status and recommendations. Mov Disord 18(7):738–750$$v18$$y2003
000140879 999C5 $$1WD Hutchison$$2Crossref$$9-- missing cx lookup --$$a10.1002/ana.410440407$$p622 -$$tAnn Neurol$$uHutchison WD, Allan RJ, Opitz H et al (1998) Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson’s disease. Ann Neurol 44:622–628$$v44$$y1998
000140879 999C5 $$1RQ Quiroga$$2Crossref$$9-- missing cx lookup --$$a10.1162/089976604774201631$$p1661 -$$tNeural Comput$$uQuiroga RQ, Nadasdy Z, Ben-Shaul Y (2004) Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput 16:1661–1687$$v16$$y2004
000140879 999C5 $$1M Matsumura$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0168-0102(97)00039-4$$p155 -$$tNeurosci Res$$uMatsumura M, Watanabe K, Ohye C (1997) Single-unit activity in the primate nucleus tegmenti pedunculopontinus related to voluntary arm movement. Neurosci Res 28:155–165$$v28$$y1997
000140879 999C5 $$1K Takakusaki$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0306-4522(97)00019-5$$p1089 -$$tNeuroscience$$uTakakusaki K, Shiroyama T, Kitai ST (1997) Two types of cholinergic neurons in the rat tegmental pedunculopontine nucleus: electrophysiological and morphological characterization. Neuroscience 79:1089–1109$$v79$$y1997
000140879 999C5 $$1JCF De Winter$$2Crossref$$uDe Winter JCF (2013) Using the Student’s t-test with extremely small sample sizes. Pract Assess Res Eval 10:1-12$$y2013
000140879 999C5 $$1M Warmuth-Metz$$2Crossref$$9-- missing cx lookup --$$a10.1001/archneur.58.7.1076$$p1076 -$$tArch Neurol$$uWarmuth-Metz M, Naumann M, Csoti I, Solymosi L (2001) Measurement of the midbrain diameter on routine magnetic resonance imaging: a simple and accurate method of differentiating between Parkinson disease and progressive supranuclear palsy. Arch Neurol 58:1076–1079$$v58$$y2001
000140879 999C5 $$1N Shao$$2Crossref$$9-- missing cx lookup --$$a10.3389/fnhum.2014.00063$$p1 -$$tFront Hum Neurosci$$uShao N, Yang J, Li J, Shang H-F (2014) Voxelwise meta-analysis of gray matter anomalies in progressive supranuclear palsy and Parkinson's disease using anatomic likelihood estimation. Front Hum Neurosci 8:1–10$$v8$$y2014
000140879 999C5 $$1T Egerton$$2Crossref$$9-- missing cx lookup --$$a10.1186/1471-2377-12-116$$p1 -$$tBMC Neurol$$uEgerton T, Williams DR, Iansek R (2012) Comparison of gait in progressive supranuclear palsy, Parkinson’s disease and healthy older adults. BMC Neurol 12:1–6. https://doi.org/10.1186/1471-2377-12-116$$v12$$y2012
000140879 999C5 $$1J Dormont$$2Crossref$$9-- missing cx lookup --$$a10.1007/s002210050474$$p401 -$$tExp Brain Res$$uDormont J, Conde H, Farin D (1998) The role of the pedunculopontine tegmental nucleus in relation to conditioned motor performance in the cat. I. Context-dependent and reinforcement-related single unit activity. Exp Brain Res 121:401–410$$v121$$y1998
000140879 999C5 $$1E Scarnati$$2Crossref$$9-- missing cx lookup --$$a10.1016/0006-8993(87)90831-6$$p116 -$$tBrain Res$$uScarnati E, Proia A, Di Loreto S, Pacitti C (1987) The reciprocal electrophysiological influence between the nucleus tegmenti pedunculopontinus and the substantia nigra in normal and decorticated rats. Brain Res 423:116–124$$v423$$y1987
000140879 999C5 $$1T Futami$$2Crossref$$9-- missing cx lookup --$$a10.1016/0168-0102(94)00869-H$$p331 -$$tNeurosci Res$$uFutami T, Takakusaki K, Kitai ST (1995) Glutamatergic and cholinergic inputs from the pedunculopontine tegmental nucleus to dopamine neurons in the substantia nigra pars compacta. Neurosci Res 21:331–342$$v21$$y1995
000140879 999C5 $$1ALI Charara$$2Crossref$$9-- missing cx lookup --$$a10.1002/(SICI)1096-9861(19960108)364:2<254::AID-CNE5>3.0.CO;2-4$$p254 -$$tJ Comp Neurol$$uCharara ALI, Smith Y, Parent A (1996) Glutamatergic inputs from the pedunculopontine nucleus to midbrain dopaminergic neurons in primates: Phaseolus vulgaris-leucoagglutinin anterograde labeling combined with postembedding glutamate and GABA immunohistochemistry. J Comp Neurol 266:254–266$$v266$$y1996
000140879 999C5 $$1DJ Galtieri$$2Crossref$$9-- missing cx lookup --$$a10.7554/eLife.30352$$pe30352 -$$teLife$$uGaltieri DJ, Estep CM, Wokosin DL et al (2017) Pedunculopontine glutamatergic neurons control spike patterning in substantia nigra dopaminergic neurons. eLife 6:e30352$$v6$$y2017
000140879 999C5 $$1M Bevan$$2Crossref$$9-- missing cx lookup --$$a10.1523/JNEUROSCI.15-11-07105.1995$$p7105 -$$tJ Neurosci$$uBevan M, Bolam JP (1995) Cholinergic, GABAergic, and glutamate-enriched inputs from the mesopontine tegmentum to the subthalamic nucleus in the rat. J Neurosci 15:7105–7120$$v15$$y1995
000140879 999C5 $$1LA Massey$$2Crossref$$9-- missing cx lookup --$$a10.1212/WNL.0b013e318292a2d2$$p1856 -$$tNeurology$$uMassey LA, Jäger HR, Paviour DC et al (2013) The midbrain to pons ratio A simple and specific MRI sign of progressive supranuclear palsy. Neurology 80:1856–1861$$v80$$y2013
000140879 999C5 $$1M Jeon$$2Crossref$$9-- missing cx lookup --$$a10.3171/jns.2003.99.4.0762$$p762 -$$tJ Neurosurg$$uJeon M, Ha Y, Cho Y et al (2003) Effect of ipsilateral subthalamic nucleus lesioning in a rat parkinsonian model: study of behavior correlated with neuronal activity in the pedunculopontine nucleus. J Neurosurg 99:762–767$$v99$$y2003
000140879 999C5 $$1S Breit$$2Crossref$$9-- missing cx lookup --$$a10.1046/j.0953-816x.2001.01800.x$$p1833 -$$tEur J Neurosci$$uBreit S, Bouali-Benazzouz R, Benabid A, Benazzouz A (2001) Unilateral lesion of the nigrostriatal pathway induces an increase of neuronal activity of the pedunculopontine nucleus, which is reversed by the lesion of the subthalamic nucleus in the rat. Eur J Neurosci 14:1833–1842$$v14$$y2001
000140879 999C5 $$1CD Hardman$$2Crossref$$9-- missing cx lookup --$$a10.1006/exnr.1997.6415$$p183 -$$tExp Neurol$$uHardman CD, Halliday GM, McRitchie DA et al (1997) Progressive supranuclear palsy affects both the substantia nigra pars compacta and reticulata. Exp Neurol 144:183–192. https://doi.org/10.1006/exnr.1997.6415$$v144$$y1997
000140879 999C5 $$1BW Fling$$2Crossref$$9-- missing cx lookup --$$a10.1093/brain/awt172$$p2405 -$$tBrain$$uFling BW, Cohen RG, Mancini M et al (2013) Asymmetric pedunculopontine network connectivity in parkinsonian patients with freezing of gait. Brain 136:2405–2418. https://doi.org/10.1093/brain/awt172$$v136$$y2013
000140879 999C5 $$1V Fraix$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0083919$$tPLoS ONE$$uFraix V, Bastin J, David O et al (2013) Pedunculopontine nucleus area oscillations during stance, stepping and freezing in Parkinson’s disease. PLoS ONE. https://doi.org/10.1371/journal.pone.0083919$$y2013