001     140879
005     20240321220908.0
024 7 _ |a 0367-004x
|2 ISSN
024 7 _ |a 10.1007/s00415-019-09396-9
|2 doi
024 7 _ |a pmid:31155683
|2 pmid
024 7 _ |a 0012-1037
|2 ISSN
024 7 _ |a 0340-5354
|2 ISSN
024 7 _ |a 0939-1517
|2 ISSN
024 7 _ |a 1432-1459
|2 ISSN
024 7 _ |a 1619-800X
|2 ISSN
024 7 _ |a altmetric:61525411
|2 altmetric
024 7 _ |a 0367-004X
|2 ISSN
037 _ _ |a DZNE-2020-07201
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Galazky, I.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Neuronal spiking in the pedunculopontine nucleus in progressive supranuclear palsy and in idiopathic Parkinson's disease.
260 _ _ |a Berlin
|c 2019
|b Springer73057
264 _ 1 |3 online
|2 Crossref
|b Springer Science and Business Media LLC
|c 2019-06-03
264 _ 1 |3 print
|2 Crossref
|b Springer Science and Business Media LLC
|c 2019-09-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1709726922_11502
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The pedunculopontine nucleus (PPN) is engaged in posture and gait control, and neuronal degeneration in the PPN has been associated with Parkinsonian disorders. Clinical outcomes of deep brain stimulation of the PPN in idiopathic Parkinson's disease (IPD) and progressive supranuclear palsy (PSP) differ, and we investigated whether the PPN is differentially affected in these conditions. We had the rare opportunity to record continuous electrophysiological data intraoperatively in 30 s blocks from single microelectrode contacts implanted in the PPN in six PSP patients and three IPD patients during rest, passive movement, and active movement. Neuronal spikes were sorted according to shape using a wavelet-based clustering approach to enable comparisons between individual neuronal firing rates in the two disease states. The action potential widths showed a bimodal distribution consistent with previous findings, suggesting spikes from noncholinergic (likely glutamatergic) and cholinergic neurons. A higher PPN spiking rate of narrow action potentials was observed in the PSP than in the IPD patients when pooled across all three conditions (Wilcoxon rank sum test: p = 0.0141). No correlation was found between firing rate and disease severity or duration. The firing rates were higher during passive movement than rest and active movement in both groups, but the differences between conditions were not significant. PSP and IPD are believed to represent distinct disease processes, and our findings that the neuronal firing rates differ according to disease state support the proposal that pathological processes directly involving the PPN may be more pronounced in PSP than IPD.
536 _ _ |a 344 - Clinical and Health Care Research (POF3-344)
|0 G:(DE-HGF)POF3-344
|c POF3-344
|f POF III
|x 0
542 _ _ |i 2019-06-03
|2 Crossref
|u http://www.springer.com/tdm
542 _ _ |i 2019-06-03
|2 Crossref
|u http://www.springer.com/tdm
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 2 |a Action Potentials: physiology
|2 MeSH
650 _ 2 |a Aged
|2 MeSH
650 _ 2 |a Cohort Studies
|2 MeSH
650 _ 2 |a Electrodes, Implanted
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Intraoperative Neurophysiological Monitoring: instrumentation
|2 MeSH
650 _ 2 |a Intraoperative Neurophysiological Monitoring: methods
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Neurons: physiology
|2 MeSH
650 _ 2 |a Parkinson Disease: diagnosis
|2 MeSH
650 _ 2 |a Parkinson Disease: physiopathology
|2 MeSH
650 _ 2 |a Parkinson Disease: surgery
|2 MeSH
650 _ 2 |a Pedunculopontine Tegmental Nucleus: physiology
|2 MeSH
650 _ 2 |a Supranuclear Palsy, Progressive: diagnosis
|2 MeSH
650 _ 2 |a Supranuclear Palsy, Progressive: physiopathology
|2 MeSH
650 _ 2 |a Supranuclear Palsy, Progressive: surgery
|2 MeSH
700 1 _ |a Kaufmann, J.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Voges, J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hinrichs, H.
|0 P:(DE-2719)2000009
|b 3
|u dzne
700 1 _ |a Heinze, H-J
|0 P:(DE-2719)2260426
|b 4
|u dzne
700 1 _ |a Sweeney-Reed, C. M.
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 1 8 |a 10.1007/s00415-019-09396-9
|b Springer Science and Business Media LLC
|d 2019-06-03
|n 9
|p 2244-2251
|3 journal-article
|2 Crossref
|t Journal of Neurology
|v 266
|y 2019
|x 0340-5354
773 _ _ |a 10.1007/s00415-019-09396-9
|g Vol. 266, no. 9, p. 2244 - 2251
|0 PERI:(DE-600)1421299-7
|n 9
|q 266:9<2244 - 2251
|p 2244-2251
|t Journal of neurology
|v 266
|y 2019
|x 0340-5354
856 4 _ |u https://pub.dzne.de/record/140879/files/DZNE-2020-07201_Restricted.pdf
856 4 _ |u https://pub.dzne.de/record/140879/files/DZNE-2020-07201_Restricted.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:pub.dzne.de:140879
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2000009
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2260426
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-344
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NEUROL : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J NEUROL : 2021
|d 2022-11-12
920 1 _ |0 I:(DE-2719)7000000
|k U Clinical Researchers - Magdeburg
|l U Clinical Researchers - Magdeburg
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)7000000
980 _ _ |a UNRESTRICTED
999 C 5 |a 10.3389/fnana.2016.00109
|9 -- missing cx lookup --
|1 F Mori
|p 1 -
|2 Crossref
|u Mori F, Okada K, Nomura T, Kobayashi Y (2016) The pedunculopontine tegmental nucleus as a motor and cognitive interface between the cerebellum and basal ganglia. Front Neuroanat 10:1–8. https://doi.org/10.3389/fnana.2016.00109
|t Front Neuroanat
|v 10
|y 2016
999 C 5 |a 10.1073/pnas.84.16.5976
|9 -- missing cx lookup --
|1 EC Hirsch
|p 5976 -
|2 Crossref
|u Hirsch EC, Graybielt ANNM, Duyckaertst C, Javoy-agid F (1987) Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc Natl Acad Sci USA 84:5976–5980
|t Proc Natl Acad Sci USA
|v 84
|y 1987
999 C 5 |a 10.1136/jnnp.51.4.540
|9 -- missing cx lookup --
|1 K Jellinger
|p 540 -
|2 Crossref
|u Jellinger K (1988) The pedunculopontine nucleus in Parkinson’s disease, progressive supranuclear palsy and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 51:540–543
|t J Neurol Neurosurg Psychiatry
|v 51
|y 1988
999 C 5 |a 10.1093/brain/123.9.1767
|9 -- missing cx lookup --
|1 PA Pahapill
|p 1767 -
|2 Crossref
|u Pahapill PA, Lozano AM (2000) The pedunculopontine nucleus and Parkinson’s disease. Brain 123:1767–1783
|t Brain
|v 123
|y 2000
999 C 5 |a 10.1097/WNR.0b013e3282638603
|9 -- missing cx lookup --
|1 L Zrinzo
|p 1631 -
|2 Crossref
|u Zrinzo L, Zrinzo L, Hariz M (2007) The peripeduncular nucleus: a novel target for deep brain stimulation? NeuroReport 8:1631–1633
|t NeuroReport
|v 8
|y 2007
999 C 5 |a 10.1007/s00221-008-1349-1
|9 -- missing cx lookup --
|1 M Weinberger
|p 165 -
|2 Crossref
|u Weinberger M, Hamani C, Hutchison WD et al (2008) Pedunculopontine nucleus microelectrode recordings in movement disorder patients. Exp Brain Res 188:165–174. https://doi.org/10.1007/s00221-008-1349-1
|t Exp Brain Res
|v 188
|y 2008
999 C 5 |a 10.1002/mds.25677
|9 -- missing cx lookup --
|1 M Pötter-Nerger
|p 1609 -
|2 Crossref
|u Pötter-Nerger M, Volkmann J (2013) Deep brain stimulation for gait and postural symptoms in Parkinson’s disease. Mov Disord 28:1609–1615. https://doi.org/10.1002/mds.25677
|t Mov Disord
|v 28
|y 2013
999 C 5 |a 10.3389/fneur.2014.00243
|1 H Morita
|9 -- missing cx lookup --
|2 Crossref
|u Morita H, Hass CJ, Moro E et al (2014) Pedunculopontine nucleus stimulation: where are we now and what needs to be done to move the field forward? Front Neurol. https://doi.org/10.3389/fneur.2014.00243
|t Front Neurol
|y 2014
999 C 5 |a 10.1093/brain/aws039
|9 -- missing cx lookup --
|1 W Thevathasan
|p 1446 -
|2 Crossref
|u Thevathasan W, Cole MH, Graepel CL et al (2012) A spatiotemporal analysis of gait freezing and the impact of pedunculopontine nucleus stimulation. Brain 135:1446–1454. https://doi.org/10.1093/brain/aws039
|t Brain
|v 135
|y 2012
999 C 5 |a 10.1097/01.wnr.0000187629.38010.12
|9 -- missing cx lookup --
|1 P Mazzone
|p 1877 -
|2 Crossref
|u Mazzone P, Lozano A, Stanzione P et al (2005) Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson’s disease. NeuroReport 16:1877–1881. https://doi.org/10.1097/01.wnr.0000187629.38010.12
|t NeuroReport
|v 16
|y 2005
999 C 5 |a 10.1093/brain/awp261
|9 -- missing cx lookup --
|1 E Moro
|p 215 -
|2 Crossref
|u Moro E, Hamani C, Poon YY et al (2010) Unilateral pedunculopontine stimulation improves falls in Parkinson’s disease. Brain 133:215–224. https://doi.org/10.1093/brain/awp261
|t Brain
|v 133
|y 2010
999 C 5 |a 10.1136/jnnp-2016-315192
|9 -- missing cx lookup --
|1 E Scelzo
|p 613 -
|2 Crossref
|u Scelzo E, Lozano AM, Hamani C et al (2017) Peduncolopontine nucleus stimulation in progressive supranuclear palsy: a randomised trial. J Neurol Neurosurg Psychiatry 88:613–616. https://doi.org/10.1136/jnnp-2016-315192
|t J Neurol Neurosurg Psychiatry
|v 88
|y 2017
999 C 5 |a 10.1016/j.parkreldis.2018.02.027
|9 -- missing cx lookup --
|1 I Galazky
|p 81 -
|2 Crossref
|u Galazky I, Kaufmann J, Lorenzl S et al (2018) Deep brain stimulation of the pedunculopontine nucleus for treatment of gait and balance disorder in progressive supranuclear palsy: effects of frequency modulations and clinical outcome. Park Relat Disord 50:81–86. https://doi.org/10.1016/j.parkreldis.2018.02.027
|t Park Relat Disord
|v 50
|y 2018
999 C 5 |a 10.1007/s00415-005-4003-x
|9 -- missing cx lookup --
|1 M Matsumura
|p 5 -
|2 Crossref
|u Matsumura M (2005) The pedunculopontine tegmental nucleus and experimental parkinsonism. J Neurol 252:5–12. https://doi.org/10.1007/s00415-005-4003-x
|t J Neurol
|v 252
|y 2005
999 C 5 |a 10.1212/WNL.46.4.922
|9 -- missing cx lookup --
|1 I Litvan
|p 922 -
|2 Crossref
|u Litvan I, Agid Y, Jankovic J et al (1996) Accuracy of clinical criteria for the diagnosis of progressive supranuclear palsy (Steele–Richardson–Olszewski syndrome). Neurology 46:922–930
|t Neurology
|v 46
|y 1996
999 C 5 |a 10.1136/jnnp.55.3.181
|9 -- missing cx lookup --
|1 A Hughes
|p 181 -
|2 Crossref
|u Hughes A, Daniel S, Kilford L, Lees A (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184
|t J Neurol Neurosurg Psychiatry
|v 55
|y 1992
999 C 5 |a 10.1002/mds.10473
|9 -- missing cx lookup --
|1 Movement Disorder Society Task Force on Rating Scales for Parkinson’s Disease
|p 738 -
|2 Crossref
|u Movement Disorder Society Task Force on Rating Scales for Parkinson’s Disease (2003) The Unified Parkinson’s Disease Rating Scale (UPDRS): status and recommendations. Mov Disord 18(7):738–750
|t Mov Disord
|v 18
|y 2003
999 C 5 |a 10.1002/ana.410440407
|9 -- missing cx lookup --
|1 WD Hutchison
|p 622 -
|2 Crossref
|u Hutchison WD, Allan RJ, Opitz H et al (1998) Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson’s disease. Ann Neurol 44:622–628
|t Ann Neurol
|v 44
|y 1998
999 C 5 |a 10.1162/089976604774201631
|9 -- missing cx lookup --
|1 RQ Quiroga
|p 1661 -
|2 Crossref
|u Quiroga RQ, Nadasdy Z, Ben-Shaul Y (2004) Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput 16:1661–1687
|t Neural Comput
|v 16
|y 2004
999 C 5 |a 10.1016/S0168-0102(97)00039-4
|9 -- missing cx lookup --
|1 M Matsumura
|p 155 -
|2 Crossref
|u Matsumura M, Watanabe K, Ohye C (1997) Single-unit activity in the primate nucleus tegmenti pedunculopontinus related to voluntary arm movement. Neurosci Res 28:155–165
|t Neurosci Res
|v 28
|y 1997
999 C 5 |a 10.1016/S0306-4522(97)00019-5
|9 -- missing cx lookup --
|1 K Takakusaki
|p 1089 -
|2 Crossref
|u Takakusaki K, Shiroyama T, Kitai ST (1997) Two types of cholinergic neurons in the rat tegmental pedunculopontine nucleus: electrophysiological and morphological characterization. Neuroscience 79:1089–1109
|t Neuroscience
|v 79
|y 1997
999 C 5 |1 JCF De Winter
|y 2013
|2 Crossref
|u De Winter JCF (2013) Using the Student’s t-test with extremely small sample sizes. Pract Assess Res Eval 10:1-12
999 C 5 |a 10.1001/archneur.58.7.1076
|9 -- missing cx lookup --
|1 M Warmuth-Metz
|p 1076 -
|2 Crossref
|u Warmuth-Metz M, Naumann M, Csoti I, Solymosi L (2001) Measurement of the midbrain diameter on routine magnetic resonance imaging: a simple and accurate method of differentiating between Parkinson disease and progressive supranuclear palsy. Arch Neurol 58:1076–1079
|t Arch Neurol
|v 58
|y 2001
999 C 5 |a 10.3389/fnhum.2014.00063
|9 -- missing cx lookup --
|1 N Shao
|p 1 -
|2 Crossref
|u Shao N, Yang J, Li J, Shang H-F (2014) Voxelwise meta-analysis of gray matter anomalies in progressive supranuclear palsy and Parkinson's disease using anatomic likelihood estimation. Front Hum Neurosci 8:1–10
|t Front Hum Neurosci
|v 8
|y 2014
999 C 5 |a 10.1186/1471-2377-12-116
|9 -- missing cx lookup --
|1 T Egerton
|p 1 -
|2 Crossref
|u Egerton T, Williams DR, Iansek R (2012) Comparison of gait in progressive supranuclear palsy, Parkinson’s disease and healthy older adults. BMC Neurol 12:1–6. https://doi.org/10.1186/1471-2377-12-116
|t BMC Neurol
|v 12
|y 2012
999 C 5 |a 10.1007/s002210050474
|9 -- missing cx lookup --
|1 J Dormont
|p 401 -
|2 Crossref
|u Dormont J, Conde H, Farin D (1998) The role of the pedunculopontine tegmental nucleus in relation to conditioned motor performance in the cat. I. Context-dependent and reinforcement-related single unit activity. Exp Brain Res 121:401–410
|t Exp Brain Res
|v 121
|y 1998
999 C 5 |a 10.1016/0006-8993(87)90831-6
|9 -- missing cx lookup --
|1 E Scarnati
|p 116 -
|2 Crossref
|u Scarnati E, Proia A, Di Loreto S, Pacitti C (1987) The reciprocal electrophysiological influence between the nucleus tegmenti pedunculopontinus and the substantia nigra in normal and decorticated rats. Brain Res 423:116–124
|t Brain Res
|v 423
|y 1987
999 C 5 |a 10.1016/0168-0102(94)00869-H
|9 -- missing cx lookup --
|1 T Futami
|p 331 -
|2 Crossref
|u Futami T, Takakusaki K, Kitai ST (1995) Glutamatergic and cholinergic inputs from the pedunculopontine tegmental nucleus to dopamine neurons in the substantia nigra pars compacta. Neurosci Res 21:331–342
|t Neurosci Res
|v 21
|y 1995
999 C 5 |a 10.1002/(SICI)1096-9861(19960108)364:2<254::AID-CNE5>3.0.CO;2-4
|9 -- missing cx lookup --
|1 ALI Charara
|p 254 -
|2 Crossref
|u Charara ALI, Smith Y, Parent A (1996) Glutamatergic inputs from the pedunculopontine nucleus to midbrain dopaminergic neurons in primates: Phaseolus vulgaris-leucoagglutinin anterograde labeling combined with postembedding glutamate and GABA immunohistochemistry. J Comp Neurol 266:254–266
|t J Comp Neurol
|v 266
|y 1996
999 C 5 |a 10.7554/eLife.30352
|9 -- missing cx lookup --
|1 DJ Galtieri
|p e30352 -
|2 Crossref
|u Galtieri DJ, Estep CM, Wokosin DL et al (2017) Pedunculopontine glutamatergic neurons control spike patterning in substantia nigra dopaminergic neurons. eLife 6:e30352
|t eLife
|v 6
|y 2017
999 C 5 |a 10.1523/JNEUROSCI.15-11-07105.1995
|9 -- missing cx lookup --
|1 M Bevan
|p 7105 -
|2 Crossref
|u Bevan M, Bolam JP (1995) Cholinergic, GABAergic, and glutamate-enriched inputs from the mesopontine tegmentum to the subthalamic nucleus in the rat. J Neurosci 15:7105–7120
|t J Neurosci
|v 15
|y 1995
999 C 5 |a 10.1212/WNL.0b013e318292a2d2
|9 -- missing cx lookup --
|1 LA Massey
|p 1856 -
|2 Crossref
|u Massey LA, Jäger HR, Paviour DC et al (2013) The midbrain to pons ratio A simple and specific MRI sign of progressive supranuclear palsy. Neurology 80:1856–1861
|t Neurology
|v 80
|y 2013
999 C 5 |a 10.3171/jns.2003.99.4.0762
|9 -- missing cx lookup --
|1 M Jeon
|p 762 -
|2 Crossref
|u Jeon M, Ha Y, Cho Y et al (2003) Effect of ipsilateral subthalamic nucleus lesioning in a rat parkinsonian model: study of behavior correlated with neuronal activity in the pedunculopontine nucleus. J Neurosurg 99:762–767
|t J Neurosurg
|v 99
|y 2003
999 C 5 |a 10.1046/j.0953-816x.2001.01800.x
|9 -- missing cx lookup --
|1 S Breit
|p 1833 -
|2 Crossref
|u Breit S, Bouali-Benazzouz R, Benabid A, Benazzouz A (2001) Unilateral lesion of the nigrostriatal pathway induces an increase of neuronal activity of the pedunculopontine nucleus, which is reversed by the lesion of the subthalamic nucleus in the rat. Eur J Neurosci 14:1833–1842
|t Eur J Neurosci
|v 14
|y 2001
999 C 5 |a 10.1006/exnr.1997.6415
|9 -- missing cx lookup --
|1 CD Hardman
|p 183 -
|2 Crossref
|u Hardman CD, Halliday GM, McRitchie DA et al (1997) Progressive supranuclear palsy affects both the substantia nigra pars compacta and reticulata. Exp Neurol 144:183–192. https://doi.org/10.1006/exnr.1997.6415
|t Exp Neurol
|v 144
|y 1997
999 C 5 |a 10.1093/brain/awt172
|9 -- missing cx lookup --
|1 BW Fling
|p 2405 -
|2 Crossref
|u Fling BW, Cohen RG, Mancini M et al (2013) Asymmetric pedunculopontine network connectivity in parkinsonian patients with freezing of gait. Brain 136:2405–2418. https://doi.org/10.1093/brain/awt172
|t Brain
|v 136
|y 2013
999 C 5 |a 10.1371/journal.pone.0083919
|1 V Fraix
|9 -- missing cx lookup --
|2 Crossref
|u Fraix V, Bastin J, David O et al (2013) Pedunculopontine nucleus area oscillations during stance, stepping and freezing in Parkinson’s disease. PLoS ONE. https://doi.org/10.1371/journal.pone.0083919
|t PLoS ONE
|y 2013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21