| Home > Publications Database > FOXG1 Regulates PRKAR2B Transcriptionally and Posttranscriptionally via miR200 in the Adult Hippocampus. > print |
| 001 | 140922 | ||
| 005 | 20240321220912.0 | ||
| 024 | 7 | _ | |a 10.1007/s12035-018-1444-7 |2 doi |
| 024 | 7 | _ | |a pmid:30539330 |2 pmid |
| 024 | 7 | _ | |a pmc:PMC6647430 |2 pmc |
| 024 | 7 | _ | |a 0893-7648 |2 ISSN |
| 024 | 7 | _ | |a 1559-1182 |2 ISSN |
| 024 | 7 | _ | |a altmetric:52597083 |2 altmetric |
| 037 | _ | _ | |a DZNE-2020-07244 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 570 |
| 100 | 1 | _ | |a Weise, Stefan C |b 0 |
| 245 | _ | _ | |a FOXG1 Regulates PRKAR2B Transcriptionally and Posttranscriptionally via miR200 in the Adult Hippocampus. |
| 260 | _ | _ | |a Totowa, NJ |c 2019 |b Humana Press |
| 264 | _ | 1 | |3 online |2 Crossref |b Springer Science and Business Media LLC |c 2018-12-11 |
| 264 | _ | 1 | |3 print |2 Crossref |b Springer Science and Business Media LLC |c 2019-07-01 |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1591185830_20666 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Rett syndrome is a complex neurodevelopmental disorder that is mainly caused by mutations in MECP2. However, mutations in FOXG1 cause a less frequent form of atypical Rett syndrome, called FOXG1 syndrome. FOXG1 is a key transcription factor crucial for forebrain development, where it maintains the balance between progenitor proliferation and neuronal differentiation. Using genome-wide small RNA sequencing and quantitative proteomics, we identified that FOXG1 affects the biogenesis of miR200b/a/429 and interacts with the ATP-dependent RNA helicase, DDX5/p68. Both FOXG1 and DDX5 associate with the microprocessor complex, whereby DDX5 recruits FOXG1 to DROSHA. RNA-Seq analyses of Foxg1cre/+ hippocampi and N2a cells overexpressing miR200 family members identified cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B) as a target of miR200 in neural cells. PRKAR2B inhibits postsynaptic functions by attenuating protein kinase A (PKA) activity; thus, increased PRKAR2B levels may contribute to neuronal dysfunctions in FOXG1 syndrome. Our data suggest that FOXG1 regulates PRKAR2B expression both on transcriptional and posttranscriptional levels. |
| 536 | _ | _ | |a 342 - Disease Mechanisms and Model Systems (POF3-342) |0 G:(DE-HGF)POF3-342 |c POF3-342 |f POF III |x 0 |
| 542 | _ | _ | |i 2018-12-11 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
| 650 | _ | 7 | |a Cyclic AMP-Dependent Protein Kinase RIIbeta Subunit |2 NLM Chemicals |
| 650 | _ | 7 | |a Forkhead Transcription Factors |2 NLM Chemicals |
| 650 | _ | 7 | |a Foxg1 protein, mouse |2 NLM Chemicals |
| 650 | _ | 7 | |a MicroRNAs |2 NLM Chemicals |
| 650 | _ | 7 | |a Mirn200 microRNA, mouse |2 NLM Chemicals |
| 650 | _ | 7 | |a Nerve Tissue Proteins |2 NLM Chemicals |
| 650 | _ | 7 | |a PRKAR2B protein, human |2 NLM Chemicals |
| 650 | _ | 2 | |a Age Factors |2 MeSH |
| 650 | _ | 2 | |a Animals |2 MeSH |
| 650 | _ | 2 | |a Cyclic AMP-Dependent Protein Kinase RIIbeta Subunit: genetics |2 MeSH |
| 650 | _ | 2 | |a Cyclic AMP-Dependent Protein Kinase RIIbeta Subunit: metabolism |2 MeSH |
| 650 | _ | 2 | |a Forkhead Transcription Factors: genetics |2 MeSH |
| 650 | _ | 2 | |a Forkhead Transcription Factors: metabolism |2 MeSH |
| 650 | _ | 2 | |a Hippocampus: growth & development |2 MeSH |
| 650 | _ | 2 | |a Hippocampus: metabolism |2 MeSH |
| 650 | _ | 2 | |a Mice |2 MeSH |
| 650 | _ | 2 | |a Mice, Inbred C57BL |2 MeSH |
| 650 | _ | 2 | |a Mice, Transgenic |2 MeSH |
| 650 | _ | 2 | |a MicroRNAs: genetics |2 MeSH |
| 650 | _ | 2 | |a MicroRNAs: metabolism |2 MeSH |
| 650 | _ | 2 | |a Nerve Tissue Proteins: genetics |2 MeSH |
| 650 | _ | 2 | |a Nerve Tissue Proteins: metabolism |2 MeSH |
| 650 | _ | 2 | |a Transcription, Genetic: physiology |2 MeSH |
| 700 | 1 | _ | |a Arumugam, Ganeshkumar |b 1 |
| 700 | 1 | _ | |a Villarreal, Alejandro |b 2 |
| 700 | 1 | _ | |a Videm, Pavankumar |b 3 |
| 700 | 1 | _ | |a Heidrich, Stefanie |b 4 |
| 700 | 1 | _ | |a Nebel, Nils |b 5 |
| 700 | 1 | _ | |a Dumit, Verónica I |b 6 |
| 700 | 1 | _ | |a Sananbenesi, Farahnaz |0 P:(DE-2719)2811099 |b 7 |u dzne |
| 700 | 1 | _ | |a Reimann, Viktoria |b 8 |
| 700 | 1 | _ | |a Craske, Madeline |b 9 |
| 700 | 1 | _ | |a Schilling, Oliver |b 10 |
| 700 | 1 | _ | |a Hess, Wolfgang R |b 11 |
| 700 | 1 | _ | |a Fischer, Andre |0 P:(DE-2719)2000047 |b 12 |u dzne |
| 700 | 1 | _ | |a Backofen, Rolf |b 13 |
| 700 | 1 | _ | |a Vogel, Tanja |0 P:(DE-HGF)0 |b 14 |e Corresponding author |
| 773 | 1 | 8 | |a 10.1007/s12035-018-1444-7 |b : Springer Science and Business Media LLC, 2018-12-11 |n 7 |p 5188-5201 |3 journal-article |2 Crossref |t Molecular Neurobiology |v 56 |y 2018 |x 0893-7648 |
| 773 | _ | _ | |a 10.1007/s12035-018-1444-7 |g Vol. 56, no. 7, p. 5188 - 5201 |0 PERI:(DE-600)2079384-4 |n 7 |q 56:7<5188 - 5201 |p 5188-5201 |t Molecular neurobiology |v 56 |y 2018 |x 0893-7648 |
| 856 | 7 | _ | |2 Pubmed Central |u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6647430 |
| 909 | C | O | |o oai:pub.dzne.de:140922 |p VDB |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 7 |6 P:(DE-2719)2811099 |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 12 |6 P:(DE-2719)2000047 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Gesundheit |l Erkrankungen des Nervensystems |1 G:(DE-HGF)POF3-340 |0 G:(DE-HGF)POF3-342 |2 G:(DE-HGF)POF3-300 |v Disease Mechanisms and Model Systems |x 0 |
| 914 | 1 | _ | |y 2019 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MOL NEUROBIOL : 2021 |d 2022-11-22 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-22 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-22 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-22 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-22 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-22 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b MOL NEUROBIOL : 2021 |d 2022-11-22 |
| 920 | 1 | _ | |0 I:(DE-2719)1440012 |k AG Bonn 2 |l Computational Systems Biology |x 0 |
| 920 | 1 | _ | |0 I:(DE-2719)1410002 |k AG Fischer 1 |l Epigenetics and Systems Medicine in Neurodegenerative Diseases |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-2719)1440012 |
| 980 | _ | _ | |a I:(DE-2719)1410002 |
| 980 | _ | _ | |a UNRESTRICTED |
| 999 | C | 5 | |a 10.1038/nrg1878 |9 -- missing cx lookup -- |2 Crossref |o 10.1038/nrg1878 |
| 999 | C | 5 | |a 10.1038/ejhg.2009.95 |9 -- missing cx lookup -- |2 Crossref |o 10.1038/ejhg.2009.95 |
| 999 | C | 5 | |a 10.1097/01.gim.0000250502.28516.3c |9 -- missing cx lookup -- |2 Crossref |o 10.1097/01.gim.0000250502.28516.3c |
| 999 | C | 5 | |a 10.1038/ejhg.2010.142 |9 -- missing cx lookup -- |2 Crossref |o 10.1038/ejhg.2010.142 |
| 999 | C | 5 | |a 10.1016/0896-6273(95)90262-7 |9 -- missing cx lookup -- |2 Crossref |o 10.1016/0896-6273(95)90262-7 |
| 999 | C | 5 | |a 10.1016/j.neuron.2012.04.025 |9 -- missing cx lookup -- |2 Crossref |o 10.1016/j.neuron.2012.04.025 |
| 999 | C | 5 | |a 10.1126/science.1090674 |9 -- missing cx lookup -- |2 Crossref |o 10.1126/science.1090674 |
| 999 | C | 5 | |a 10.1002/stem.443 |9 -- missing cx lookup -- |2 Crossref |o 10.1002/stem.443 |
| 999 | C | 5 | |a 10.1016/S0092-8674(04)00298-3 |9 -- missing cx lookup -- |2 Crossref |o 10.1016/S0092-8674(04)00298-3 |
| 999 | C | 5 | |a 10.1093/cercor/bhm209 |9 -- missing cx lookup -- |2 Crossref |o 10.1093/cercor/bhm209 |
| 999 | C | 5 | |a 10.18632/oncotarget.9545 |9 -- missing cx lookup -- |2 Crossref |o 10.18632/oncotarget.9545 |
| 999 | C | 5 | |a 10.1186/1749-8104-6-9 |9 -- missing cx lookup -- |2 Crossref |o 10.1186/1749-8104-6-9 |
| 999 | C | 5 | |a 10.1074/jbc.M111.328336 |9 -- missing cx lookup -- |2 Crossref |o 10.1074/jbc.M111.328336 |
| 999 | C | 5 | |a 10.4161/epi.5.7.13055 |9 -- missing cx lookup -- |2 Crossref |o 10.4161/epi.5.7.13055 |
| 999 | C | 5 | |a 10.1073/pnas.1005595107 |9 -- missing cx lookup -- |2 Crossref |o 10.1073/pnas.1005595107 |
| 999 | C | 5 | |a 10.4161/rna.24286 |9 -- missing cx lookup -- |2 Crossref |o 10.4161/rna.24286 |
| 999 | C | 5 | |a 10.1006/dbio.2000.9732 |9 -- missing cx lookup -- |2 Crossref |o 10.1006/dbio.2000.9732 |
| 999 | C | 5 | |a 10.1038/nmeth.3901 |9 -- missing cx lookup -- |2 Crossref |o 10.1038/nmeth.3901 |
| 999 | C | 5 | |a 10.1093/nar/gkw343 |9 -- missing cx lookup -- |2 Crossref |o 10.1093/nar/gkw343 |
| 999 | C | 5 | |a 10.1093/nar/gkx409 |9 -- missing cx lookup -- |2 Crossref |o 10.1093/nar/gkx409 |
| 999 | C | 5 | |a 10.1038/nmeth.2019 |9 -- missing cx lookup -- |2 Crossref |o 10.1038/nmeth.2019 |
| 999 | C | 5 | |a 10.1128/MCB.20.17.6201-6211.2000 |9 -- missing cx lookup -- |2 Crossref |o 10.1128/MCB.20.17.6201-6211.2000 |
| 999 | C | 5 | |a 10.1523/JNEUROSCI.22-15-06526.2002 |9 -- missing cx lookup -- |2 Crossref |o 10.1523/JNEUROSCI.22-15-06526.2002 |
| 999 | C | 5 | |a 10.1038/srep35729 |9 -- missing cx lookup -- |2 Crossref |o 10.1038/srep35729 |
| 999 | C | 5 | |a 10.1523/JNEUROSCI.2124-12.2012 |9 -- missing cx lookup -- |2 Crossref |o 10.1523/JNEUROSCI.2124-12.2012 |
| 999 | C | 5 | |a 10.1016/j.neuron.2007.11.018 |9 -- missing cx lookup -- |2 Crossref |o 10.1016/j.neuron.2007.11.018 |
| 999 | C | 5 | |a 10.1111/jnc.13089 |9 -- missing cx lookup -- |2 Crossref |o 10.1111/jnc.13089 |
| 999 | C | 5 | |a 10.1242/dev.092809 |9 -- missing cx lookup -- |2 Crossref |o 10.1242/dev.092809 |
| 999 | C | 5 | |a 10.1016/j.molcel.2016.06.014 |9 -- missing cx lookup -- |2 Crossref |o 10.1016/j.molcel.2016.06.014 |
| 999 | C | 5 | |a 10.1038/nrm.2016.50 |9 -- missing cx lookup -- |2 Crossref |o 10.1038/nrm.2016.50 |
| 999 | C | 5 | |a 10.1186/s13023-016-0545-5 |9 -- missing cx lookup -- |2 Crossref |o 10.1186/s13023-016-0545-5 |
| 999 | C | 5 | |a 10.3389/fnsyn.2011.00001 |9 -- missing cx lookup -- |2 Crossref |o 10.3389/fnsyn.2011.00001 |
| 999 | C | 5 | |a 10.1038/nature03049 |9 -- missing cx lookup -- |2 Crossref |o 10.1038/nature03049 |
| 999 | C | 5 | |a 10.1126/scisignal.2003706 |9 -- missing cx lookup -- |2 Crossref |o 10.1126/scisignal.2003706 |
| 999 | C | 5 | |a 10.1093/nar/gkq547 |9 -- missing cx lookup -- |2 Crossref |o 10.1093/nar/gkq547 |
| 999 | C | 5 | |a 10.1016/j.molcel.2015.01.004 |9 -- missing cx lookup -- |2 Crossref |o 10.1016/j.molcel.2015.01.004 |
| 999 | C | 5 | |a 10.1093/nar/gkw400 |9 -- missing cx lookup -- |2 Crossref |o 10.1093/nar/gkw400 |
| 999 | C | 5 | |a 10.1523/JNEUROSCI.5240-11.2012 |9 -- missing cx lookup -- |2 Crossref |o 10.1523/JNEUROSCI.5240-11.2012 |
| 999 | C | 5 | |a 10.1523/JNEUROSCI.2897-10.2011 |9 -- missing cx lookup -- |2 Crossref |o 10.1523/JNEUROSCI.2897-10.2011 |
| 999 | C | 5 | |a 10.1073/pnas.1515190112 |9 -- missing cx lookup -- |2 Crossref |o 10.1073/pnas.1515190112 |
| 999 | C | 5 | |a 10.1016/j.devcel.2014.01.032 |9 -- missing cx lookup -- |2 Crossref |o 10.1016/j.devcel.2014.01.032 |
| 999 | C | 5 | |a 10.1084/jem.20110235 |9 -- missing cx lookup -- |2 Crossref |o 10.1084/jem.20110235 |
| 999 | C | 5 | |a 10.1074/jbc.M113.529172 |9 -- missing cx lookup -- |2 Crossref |o 10.1074/jbc.M113.529172 |
| 999 | C | 5 | |a 10.1016/j.celrep.2014.07.058 |9 -- missing cx lookup -- |2 Crossref |o 10.1016/j.celrep.2014.07.058 |
| 999 | C | 5 | |a 10.1007/s00441-014-1911-z |9 -- missing cx lookup -- |2 Crossref |o 10.1007/s00441-014-1911-z |
| 999 | C | 5 | |a 10.1038/emboj.2010.349 |9 -- missing cx lookup -- |2 Crossref |o 10.1038/emboj.2010.349 |
| 999 | C | 5 | |a 10.1016/j.devcel.2013.09.018 |9 -- missing cx lookup -- |2 Crossref |o 10.1016/j.devcel.2013.09.018 |
| 999 | C | 5 | |a 10.1016/j.mcn.2015.04.007 |9 -- missing cx lookup -- |2 Crossref |o 10.1016/j.mcn.2015.04.007 |
| 999 | C | 5 | |a 10.1016/j.biopha.2016.02.033 |9 -- missing cx lookup -- |2 Crossref |o 10.1016/j.biopha.2016.02.033 |
| 999 | C | 5 | |a 10.1182/blood-2010-09-299719 |9 -- missing cx lookup -- |2 Crossref |o 10.1182/blood-2010-09-299719 |
| 999 | C | 5 | |y 2000 |2 Crossref |o BS Skalhegg 2000 |
| 999 | C | 5 | |a 10.1186/1756-6606-5-14 |9 -- missing cx lookup -- |2 Crossref |o 10.1186/1756-6606-5-14 |
| 999 | C | 5 | |a 10.1038/nn997 |9 -- missing cx lookup -- |2 Crossref |o 10.1038/nn997 |
| 999 | C | 5 | |a 10.1016/j.celrep.2014.04.027 |9 -- missing cx lookup -- |2 Crossref |o 10.1016/j.celrep.2014.04.027 |
| 999 | C | 5 | |a 10.1016/S0092-8674(00)81904-2 |9 -- missing cx lookup -- |2 Crossref |o 10.1016/S0092-8674(00)81904-2 |
| 999 | C | 5 | |a 10.1002/hipo.20218 |9 -- missing cx lookup -- |2 Crossref |o 10.1002/hipo.20218 |
| 999 | C | 5 | |a 10.1523/JNEUROSCI.2623-05.2006 |9 -- missing cx lookup -- |2 Crossref |o 10.1523/JNEUROSCI.2623-05.2006 |
| 999 | C | 5 | |a 10.3389/fncel.2016.00015 |9 -- missing cx lookup -- |2 Crossref |o 10.3389/fncel.2016.00015 |
| 999 | C | 5 | |a 10.1016/j.cell.2015.06.034 |9 -- missing cx lookup -- |2 Crossref |o 10.1016/j.cell.2015.06.034 |
| 999 | C | 5 | |a 10.1523/JNEUROSCI.18-10-03639.1998 |9 -- missing cx lookup -- |2 Crossref |o 10.1523/JNEUROSCI.18-10-03639.1998 |
| 999 | C | 5 | |a 10.1523/JNEUROSCI.2409-04.2004 |9 -- missing cx lookup -- |2 Crossref |o 10.1523/JNEUROSCI.2409-04.2004 |
| 999 | C | 5 | |a 10.1016/j.bbamcr.2012.05.012 |9 -- missing cx lookup -- |2 Crossref |o 10.1016/j.bbamcr.2012.05.012 |
| 999 | C | 5 | |a 10.1002/ana.24513 |9 -- missing cx lookup -- |2 Crossref |o 10.1002/ana.24513 |
| 999 | C | 5 | |a 10.1016/j.neuroscience.2016.03.027 |9 -- missing cx lookup -- |2 Crossref |o 10.1016/j.neuroscience.2016.03.027 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|