001     140978
005     20240925104602.0
024 7 _ |a pmc:PMC8357005
|2 pmc
024 7 _ |a 10.1002/hbm.24517
|2 doi
024 7 _ |a pmid:30697878
|2 pmid
024 7 _ |a 1065-9471
|2 ISSN
024 7 _ |a 1097-0193
|2 ISSN
024 7 _ |a altmetric:54916773
|2 altmetric
037 _ _ |a DZNE-2020-07300
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Scherr, Martin
|b 0
245 _ _ |a Effective connectivity in the default mode network is distinctively disrupted in Alzheimer's disease-A simultaneous resting-state FDG-PET/fMRI study.
260 _ _ |a New York, NY
|c 2021
|b Wiley-Liss
264 _ 1 |3 online
|2 Crossref
|b Wiley
|c 2019-01-30
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1727253949_3424
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A prominent finding of postmortem and molecular imaging studies on Alzheimer's disease (AD) is the accumulation of neuropathological proteins in brain regions of the default mode network (DMN). Molecular models suggest that the progression of disease proteins depends on the directionality of signaling pathways. At network level, effective connectivity (EC) reflects directionality of signaling pathways. We hypothesized a specific pattern of EC in the DMN of patients with AD, related to cognitive impairment. Metabolic connectivity mapping is a novel measure of EC identifying regions of signaling input based on neuroenergetics. We simultaneously acquired resting-state functional MRI and FDG-PET data from patients with early AD (n = 35) and healthy subjects (n = 18) on an integrated PET/MR scanner. We identified two distinct subnetworks of EC in the DMN of healthy subjects: an anterior part with bidirectional EC between hippocampus and medial prefrontal cortex and a posterior part with predominant input into medial parietal cortex. Patients had reduced input into the medial parietal system and absent input from hippocampus into medial prefrontal cortex (p < 0.05, corrected). In a multiple linear regression with unimodal imaging and EC measures (F4,25 = 5.63, p = 0.002, r2 = 0.47), we found that EC (β = 0.45, p = 0.012) was stronger associated with cognitive deficits in patients than any of the PET and fMRI measures alone. Our approach indicates specific disruptions of EC in the DMN of patients with AD and might be suitable to test molecular theories about downstream and upstream spreading of neuropathology in AD.
536 _ _ |a 344 - Clinical and Health Care Research (POF3-344)
|0 G:(DE-HGF)POF3-344
|c POF3-344
|f POF III
|x 0
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 1
542 _ _ |i 2019-01-30
|2 Crossref
|u http://doi.wiley.com/10.1002/tdm_license_1.1
542 _ _ |i 2019-01-30
|2 Crossref
|u http://onlinelibrary.wiley.com/termsAndConditions#vor
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 2 |a Aged
|2 MeSH
650 _ 2 |a Alzheimer Disease: diagnostic imaging
|2 MeSH
650 _ 2 |a Alzheimer Disease: metabolism
|2 MeSH
650 _ 2 |a Alzheimer Disease: physiopathology
|2 MeSH
650 _ 2 |a Cerebral Cortex: diagnostic imaging
|2 MeSH
650 _ 2 |a Cerebral Cortex: metabolism
|2 MeSH
650 _ 2 |a Cerebral Cortex: physiopathology
|2 MeSH
650 _ 2 |a Connectome: methods
|2 MeSH
650 _ 2 |a Default Mode Network: diagnostic imaging
|2 MeSH
650 _ 2 |a Default Mode Network: metabolism
|2 MeSH
650 _ 2 |a Default Mode Network: physiopathology
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging: methods
|2 MeSH
650 _ 2 |a Multimodal Imaging: methods
|2 MeSH
650 _ 2 |a Positron-Emission Tomography: methods
|2 MeSH
700 1 _ |a Utz, Lukas
|b 1
700 1 _ |a Tahmasian, Masoud
|b 2
700 1 _ |a Pasquini, Lorenzo
|b 3
700 1 _ |a Grothe, Michel J
|0 P:(DE-2719)2810708
|b 4
700 1 _ |a Rauschecker, Josef P
|b 5
700 1 _ |a Grimmer, Timo
|b 6
700 1 _ |a Drzezga, Alexander
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Sorg, Christian
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Riedl, Valentin
|0 P:(DE-HGF)0
|b 9
|e Corresponding author
773 1 8 |a 10.1002/hbm.24517
|b : Wiley, 2019-01-30
|3 journal-article
|2 Crossref
|t Human Brain Mapping
|y 2019
|x 1065-9471
773 _ _ |a 10.1002/hbm.24517
|0 PERI:(DE-600)1492703-2
|n 13
|p 4134-4143
|t Human brain mapping
|v 42
|y 2021
|x 1065-9471
856 4 _ |u https://pub.dzne.de/record/140978/files/DZNE-2020-07300_Restricted.pdf
856 4 _ |u https://pub.dzne.de/record/140978/files/DZNE-2020-07300_Restricted.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:pub.dzne.de:140978
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2810708
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-344
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 1
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-22
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-27T20:46:01Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-27T20:46:01Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-09-27T20:46:01Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b HUM BRAIN MAPP : 2021
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-22
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-22
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b HUM BRAIN MAPP : 2021
|d 2022-11-22
920 1 _ |0 I:(DE-2719)1510100
|k AG Teipel
|l Clinical Dementia Research (Rostock /Greifswald)
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1510100
980 _ _ |a UNRESTRICTED
999 C 5 |y 2010
|2 Crossref
|o Agosta 2010
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.jalz.2011.03.008
|2 Crossref
|o 10.1016/j.jalz.2011.03.008
999 C 5 |9 -- missing cx lookup --
|a 10.3389/fnsys.2011.00002
|2 Crossref
|o 10.3389/fnsys.2011.00002
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuron.2010.02.005
|2 Crossref
|o 10.1016/j.neuron.2010.02.005
999 C 5 |9 -- missing cx lookup --
|a 10.1016/S0166-2236(02)02264-6
|2 Crossref
|o 10.1016/S0166-2236(02)02264-6
999 C 5 |9 -- missing cx lookup --
|a 10.1097/00004647-200110000-00001
|2 Crossref
|o 10.1097/00004647-200110000-00001
999 C 5 |9 -- missing cx lookup --
|a 10.1007/BF00308809
|2 Crossref
|o 10.1007/BF00308809
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nrn3887
|2 Crossref
|o 10.1038/nrn3887
999 C 5 |9 -- missing cx lookup --
|a 10.1523/JNEUROSCI.2177-05.2005
|2 Crossref
|o 10.1523/JNEUROSCI.2177-05.2005
999 C 5 |9 -- missing cx lookup --
|a 10.1073/pnas.1520613113
|2 Crossref
|o 10.1073/pnas.1520613113
999 C 5 |9 -- missing cx lookup --
|a 10.1093/brain/awr066
|2 Crossref
|o 10.1093/brain/awr066
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.nicl.2014.02.010
|2 Crossref
|o 10.1016/j.nicl.2014.02.010
999 C 5 |9 -- missing cx lookup --
|a 10.1016/S0896-6273(02)00569-X
|2 Crossref
|o 10.1016/S0896-6273(02)00569-X
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuropsychologia.2006.06.017
|2 Crossref
|o 10.1016/j.neuropsychologia.2006.06.017
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nrn2786
|2 Crossref
|o 10.1038/nrn2786
999 C 5 |9 -- missing cx lookup --
|a 10.1074/jbc.M808759200
|2 Crossref
|o 10.1074/jbc.M808759200
999 C 5 |y 2008
|2 Crossref
|o GÖttler 2008
999 C 5 |9 -- missing cx lookup --
|a 10.1177/0271678X18759182
|2 Crossref
|o 10.1177/0271678X18759182
999 C 5 |9 -- missing cx lookup --
|a 10.1093/cercor/bhn059
|2 Crossref
|o 10.1093/cercor/bhn059
999 C 5 |9 -- missing cx lookup --
|a 10.1073/pnas.0308627101
|2 Crossref
|o 10.1073/pnas.0308627101
999 C 5 |9 -- missing cx lookup --
|a 10.1212/WNL.0000000000004643
|2 Crossref
|o 10.1212/WNL.0000000000004643
999 C 5 |9 -- missing cx lookup --
|a 10.1002/hbm.23018
|2 Crossref
|o 10.1002/hbm.23018
999 C 5 |9 -- missing cx lookup --
|a 10.1371/journal.pbio.0060159
|2 Crossref
|o 10.1371/journal.pbio.0060159
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2013.05.011
|2 Crossref
|o 10.1016/j.neuroimage.2013.05.011
999 C 5 |9 -- missing cx lookup --
|a 10.1371/journal.pcbi.1003956
|2 Crossref
|o 10.1371/journal.pcbi.1003956
999 C 5 |9 -- missing cx lookup --
|a 10.1002/ana.22615
|2 Crossref
|o 10.1002/ana.22615
999 C 5 |9 -- missing cx lookup --
|a 10.1152/jn.00077.2008
|2 Crossref
|o 10.1152/jn.00077.2008
999 C 5 |9 -- missing cx lookup --
|a 10.1002/ana.20009
|2 Crossref
|o 10.1002/ana.20009
999 C 5 |9 -- missing cx lookup --
|a 10.1523/JNEUROSCI.2170-12.2012
|2 Crossref
|o 10.1523/JNEUROSCI.2170-12.2012
999 C 5 |9 -- missing cx lookup --
|a 10.1093/brain/awt286
|2 Crossref
|o 10.1093/brain/awt286
999 C 5 |2 Crossref
|o
999 C 5 |9 -- missing cx lookup --
|a 10.1111/j.1749-6632.2000.tb05559.x
|2 Crossref
|o 10.1111/j.1749-6632.2000.tb05559.x
999 C 5 |9 -- missing cx lookup --
|a 10.1093/brain/awu103
|2 Crossref
|o 10.1093/brain/awu103
999 C 5 |y 2016
|2 Crossref
|o Nuttall 2016
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nature05289
|2 Crossref
|o 10.1038/nature05289
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nn.2583
|2 Crossref
|o 10.1038/nn.2583
999 C 5 |9 -- missing cx lookup --
|a 10.3233/JAD-170096
|2 Crossref
|o 10.3233/JAD-170096
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.jalz.2014.02.007
|2 Crossref
|o 10.1016/j.jalz.2014.02.007
999 C 5 |9 -- missing cx lookup --
|a 10.1016/S1474-4422(11)70158-2
|2 Crossref
|o 10.1016/S1474-4422(11)70158-2
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2011.10.018
|2 Crossref
|o 10.1016/j.neuroimage.2011.10.018
999 C 5 |9 -- missing cx lookup --
|a 10.1002/1531-8249(199903)45:3<358::AID-ANA12>3.0.CO;2-X
|2 Crossref
|o 10.1002/1531-8249(199903)45:3<358::AID-ANA12>3.0.CO;2-X
999 C 5 |9 -- missing cx lookup --
|a 10.1146/annurev.neuro.29.051605.112819
|2 Crossref
|o 10.1146/annurev.neuro.29.051605.112819
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuron.2011.12.040
|2 Crossref
|o 10.1016/j.neuron.2011.12.040
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nrn3338
|2 Crossref
|o 10.1038/nrn3338
999 C 5 |9 -- missing cx lookup --
|a 10.1523/JNEUROSCI.0492-14.2014
|2 Crossref
|o 10.1523/JNEUROSCI.0492-14.2014
999 C 5 |9 -- missing cx lookup --
|a 10.1073/pnas.1513752113
|2 Crossref
|o 10.1073/pnas.1513752113
999 C 5 |9 -- missing cx lookup --
|a 10.3233/JAD-180022
|2 Crossref
|o 10.3233/JAD-180022
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuron.2016.01.028
|2 Crossref
|o 10.1016/j.neuron.2016.01.028
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuron.2009.03.024
|2 Crossref
|o 10.1016/j.neuron.2009.03.024
999 C 5 |9 -- missing cx lookup --
|a 10.1523/JNEUROSCI.0639-16.2016
|2 Crossref
|o 10.1523/JNEUROSCI.0639-16.2016
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2010.08.063
|2 Crossref
|o 10.1016/j.neuroimage.2010.08.063
999 C 5 |9 -- missing cx lookup --
|a 10.1371/journal.pone.0025031
|2 Crossref
|o 10.1371/journal.pone.0025031
999 C 5 |9 -- missing cx lookup --
|a 10.1073/pnas.0708803104
|2 Crossref
|o 10.1073/pnas.0708803104
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2006.05.033
|2 Crossref
|o 10.1016/j.neuroimage.2006.05.033
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.clinph.2004.09.022
|2 Crossref
|o 10.1016/j.clinph.2004.09.022
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nrn3785
|2 Crossref
|o 10.1038/nrn3785
999 C 5 |9 -- missing cx lookup --
|a 10.1073/pnas.1303346110
|2 Crossref
|o 10.1073/pnas.1303346110
999 C 5 |9 -- missing cx lookup --
|a 10.1002/hbm.20531
|2 Crossref
|o 10.1002/hbm.20531
999 C 5 |9 -- missing cx lookup --
|a 10.1523/JNEUROSCI.3539-11.2011
|2 Crossref
|o 10.1523/JNEUROSCI.3539-11.2011
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2011.07.044
|2 Crossref
|o 10.1016/j.neuroimage.2011.07.044
999 C 5 |9 -- missing cx lookup --
|a 10.1073/pnas.0914892107
|2 Crossref
|o 10.1073/pnas.0914892107
999 C 5 |9 -- missing cx lookup --
|a 10.1038/416535a
|2 Crossref
|o 10.1038/416535a
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2010.02.046
|2 Crossref
|o 10.1016/j.neuroimage.2010.02.046
999 C 5 |9 -- missing cx lookup --
|a 10.1002/hbm.22234
|2 Crossref
|o 10.1002/hbm.22234
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.celrep.2015.04.017
|2 Crossref
|o 10.1016/j.celrep.2015.04.017
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2012.10.071
|2 Crossref
|o 10.1016/j.neuroimage.2012.10.071
999 C 5 |9 -- missing cx lookup --
|a 10.1148/radiol.10091701
|2 Crossref
|o 10.1148/radiol.10091701
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neubiorev.2016.11.023
|2 Crossref
|o 10.1016/j.neubiorev.2016.11.023
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neulet.2014.06.043
|2 Crossref
|o 10.1016/j.neulet.2014.06.043
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuron.2012.03.004
|2 Crossref
|o 10.1016/j.neuron.2012.03.004
999 C 5 |9 -- missing cx lookup --
|a 10.1093/brain/awq075
|2 Crossref
|o 10.1093/brain/awq075


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21