000141163 001__ 141163
000141163 005__ 20250416155201.0
000141163 0247_ $$2doi$$a10.1002/jnr.23020
000141163 0247_ $$2pmid$$apmid:22488725
000141163 0247_ $$2ISSN$$a0360-4012
000141163 0247_ $$2ISSN$$a1097-4547
000141163 037__ $$aDZNE-2020-07485
000141163 041__ $$aEnglish
000141163 082__ $$a570
000141163 1001_ $$0P:(DE-HGF)0$$aMelo, Daniela R$$b0
000141163 245__ $$aMethylmalonate impairs mitochondrial respiration supported by NADH-linked substrates: involvement of mitochondrial glutamate metabolism.
000141163 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2012
000141163 264_1 $$2Crossref$$3online$$bWiley$$c2012-02-20
000141163 264_1 $$2Crossref$$3print$$bWiley$$c2012-06-01
000141163 3367_ $$2DRIVER$$aarticle
000141163 3367_ $$2DataCite$$aOutput Types/Journal article
000141163 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1744811482_3460
000141163 3367_ $$2BibTeX$$aARTICLE
000141163 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000141163 3367_ $$00$$2EndNote$$aJournal Article
000141163 520__ $$aThe neurodegeneration that occurs in methylmalonic acidemia is proposed to be associated with impairment of mitochondrial oxidative metabolism resulting from methylmalonate (MMA) accumulation. The present study evaluated the effects of MMA on oxygen consumption by isolated rat brain mitochondria in the presence of NADH-linked substrates (α-ketoglutarate, citrate, isocitrate, glutamate, malate, and pyruvate). Respiration supported either by glutamate or glutamate plus malate was significantly inhibited by MMA (1-10 mM), whereas no inhibition was observed when a cocktail of NADH-linked substrates was used. Measurements of glutamate transport revealed that the inhibitory effect of MMA on respiration maintained by this substrate is not due to inhibition of its mitochondrial uptake. In light of this result, the effect of MMA on the activity of relevant enzymes involved in mitochondrial glutamate metabolism was investigated. MMA had minor inhibitory effects on glutamate dehydrogenase and aspartate aminotransferase, whereas α-ketoglutarate dehydrogenase was significantly inhibited by this metabolite (K(i) = 3.65 mM). Moreover, measurements of α-ketoglutarate transport and mitochondrial MMA accumulation indicated that MMA/α-ketoglutarate exchange depletes mitochondria from this substrate, which may further contribute to the inhibition of glutamate-sustained respiration. To study the effect of chronic in vivo MMA treatment on mitochondrial function, young rats were intraperitoneally injected with MMA. No significant difference was observed in respiration between isolated brain mitochondria from control and MMA-treated rats, indicating that in vivo MMA treatment did not lead to permanent mitochondrial respiratory defects. Taken together, these findings indicate that the inhibitory effect of MMA on mitochondrial oxidative metabolism can be ascribed to concurrent inhibition of specific enzymes and lower availability of respiratory substrates.
000141163 536__ $$0G:(DE-HGF)POF3-341$$a341 - Molecular Signaling (POF3-341)$$cPOF3-341$$fPOF III$$x0
000141163 542__ $$2Crossref$$i2015-09-01$$uhttp://doi.wiley.com/10.1002/tdm_license_1.1
000141163 588__ $$aDataset connected to CrossRef, PubMed,
000141163 650_7 $$2NLM Chemicals$$aAmino Acid Transport System X-AG
000141163 650_7 $$2NLM Chemicals$$aKetoglutaric Acids
000141163 650_7 $$2NLM Chemicals$$aMultienzyme Complexes
000141163 650_7 $$03KX376GY7L$$2NLM Chemicals$$aGlutamic Acid
000141163 650_7 $$08LL8S712J7$$2NLM Chemicals$$aMethylmalonic Acid
000141163 650_7 $$0EC 1.2.4.2$$2NLM Chemicals$$aKetoglutarate Dehydrogenase Complex
000141163 650_7 $$0EC 1.4.1.2$$2NLM Chemicals$$aGlutamate Dehydrogenase
000141163 650_7 $$0EC 2.3.3.1$$2NLM Chemicals$$aCitrate (si)-Synthase
000141163 650_7 $$0EC 4.1.1.-$$2NLM Chemicals$$aCarboxy-Lyases
000141163 650_7 $$0EC 4.1.1.12$$2NLM Chemicals$$aaspartate 4-decarboxylase
000141163 650_2 $$2MeSH$$aAmino Acid Transport System X-AG: metabolism
000141163 650_2 $$2MeSH$$aAnalysis of Variance
000141163 650_2 $$2MeSH$$aAnimals
000141163 650_2 $$2MeSH$$aAnimals, Newborn
000141163 650_2 $$2MeSH$$aCarboxy-Lyases: metabolism
000141163 650_2 $$2MeSH$$aCitrate (si)-Synthase: metabolism
000141163 650_2 $$2MeSH$$aDose-Response Relationship, Drug
000141163 650_2 $$2MeSH$$aGlutamate Dehydrogenase: metabolism
000141163 650_2 $$2MeSH$$aGlutamic Acid: metabolism
000141163 650_2 $$2MeSH$$aKetoglutarate Dehydrogenase Complex: metabolism
000141163 650_2 $$2MeSH$$aKetoglutaric Acids: metabolism
000141163 650_2 $$2MeSH$$aMethylmalonic Acid: metabolism
000141163 650_2 $$2MeSH$$aMethylmalonic Acid: pharmacology
000141163 650_2 $$2MeSH$$aMitochondria: drug effects
000141163 650_2 $$2MeSH$$aMitochondria: metabolism
000141163 650_2 $$2MeSH$$aMultienzyme Complexes: metabolism
000141163 650_2 $$2MeSH$$aOxygen Consumption: drug effects
000141163 650_2 $$2MeSH$$aProsencephalon: drug effects
000141163 650_2 $$2MeSH$$aProsencephalon: ultrastructure
000141163 650_2 $$2MeSH$$aRats
000141163 650_2 $$2MeSH$$aRats, Wistar
000141163 7001_ $$0P:(DE-2719)2730352$$aMirandola, Sandra R$$b1$$udzne
000141163 7001_ $$0P:(DE-HGF)0$$aAssunção, Nilson A$$b2
000141163 7001_ $$0P:(DE-HGF)0$$aCastilho, Roger F$$b3$$eCorresponding author
000141163 77318 $$2Crossref$$3journal-article$$a10.1002/jnr.23020$$b : Wiley, 2012-02-20$$n6$$p1190-1199$$tJournal of Neuroscience Research$$v90$$x0360-4012$$y2012
000141163 773__ $$0PERI:(DE-600)1474904-X$$a10.1002/jnr.23020$$gVol. 90, no. 6, p. 1190 - 1199$$n6$$p1190-1199$$q90:6<1190 - 1199$$tJournal of neuroscience research$$v90$$x0360-4012$$y2012
000141163 8564_ $$uhttps://pub.dzne.de/record/141163/files/DZNE-2020-07485_Restricted.pdf
000141163 8564_ $$uhttps://pub.dzne.de/record/141163/files/DZNE-2020-07485_Restricted.pdf?subformat=pdfa$$xpdfa
000141163 909CO $$ooai:pub.dzne.de:141163$$pVDB
000141163 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2730352$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000141163 9131_ $$0G:(DE-HGF)POF3-341$$1G:(DE-HGF)POF3-340$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lErkrankungen des Nervensystems$$vMolecular Signaling$$x0
000141163 9141_ $$y2012
000141163 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000141163 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000141163 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000141163 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000141163 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NEUROSCI RES : 2017
000141163 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000141163 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000141163 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000141163 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000141163 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000141163 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000141163 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000141163 9201_ $$0I:(DE-2719)1013012$$kAG Alamoudi$$lCryo-electron microscopy and tomography$$x0
000141163 980__ $$ajournal
000141163 980__ $$aVDB
000141163 980__ $$aI:(DE-2719)1013012
000141163 980__ $$aUNRESTRICTED
000141163 999C5 $$2Crossref$$oBrismar 1994$$y1994
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1113/jphysiol.2005.091199$$o10.1113/jphysiol.2005.091199
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ab.2008.06.023$$o10.1016/j.ab.2008.06.023
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1096/fj.08-121848$$o10.1096/fj.08-121848
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1471-4159.1988.tb03044.x$$o10.1111/j.1471-4159.1988.tb03044.x
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1074/jbc.M808066200$$o10.1074/jbc.M808066200
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1093/jn/130.4.1026S$$o10.1093/jn/130.4.1026S
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s10863-010-9308-5$$o10.1007/s10863-010-9308-5
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1042/bj1680521$$o10.1042/bj1680521
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1042/bj1560323$$o10.1042/bj1560323
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0885-4505(91)90008-9$$o10.1016/0885-4505(91)90008-9
000141163 999C5 $$2Crossref$$oDutra 1991b$$y1991b
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF00711328$$o10.1007/BF00711328
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1471-4159.1988.tb01826.x$$o10.1111/j.1471-4159.1988.tb01826.x
000141163 999C5 $$2Crossref$$oFenton The metabolic and molecular bases of inherited disease 2001$$tThe metabolic and molecular bases of inherited disease$$y2001
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1074/jbc.M201572200$$o10.1074/jbc.M201572200
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1097/00001756-199907130-00009$$o10.1097/00001756-199907130-00009
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0197-0186(99)00114-X$$o10.1016/S0197-0186(99)00114-X
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1385/MN:31:1-3:043$$o10.1385/MN:31:1-3:043
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1172/JCI106725$$o10.1172/JCI106725
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s10545-008-0801-5$$o10.1007/s10545-008-0801-5
000141163 999C5 $$2Crossref$$oHayasaka 1982$$y1982
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1042/bj1380171$$o10.1042/bj1380171
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s00018-005-4463-2$$o10.1007/s00018-005-4463-2
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.expneurol.2006.04.004$$o10.1016/j.expneurol.2006.04.004
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1471-4159.2004.02565.x$$o10.1111/j.1471-4159.2004.02565.x
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/jnr.21444$$o10.1002/jnr.21444
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s10863-011-9330-2$$o10.1007/s10863-011-9330-2
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s10545-007-0798-1$$o10.1007/s10545-007-0798-1
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s10545-007-0571-5$$o10.1007/s10545-007-0571-5
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jsb.2010.04.005$$o10.1016/j.jsb.2010.04.005
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ijdevneu.2005.10.005$$o10.1016/j.ijdevneu.2005.10.005
000141163 999C5 $$2Crossref$$oPinar-Sueiro 2010$$y2010
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0003-2697(70)90310-6$$o10.1016/0003-2697(70)90310-6
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/jcbfm.1987.130$$o10.1038/jcbfm.1987.130
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.bbabio.2008.05.447$$o10.1016/j.bbabio.2008.05.447
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.neuint.2004.03.006$$o10.1016/j.neuint.2004.03.006
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0076-6879(69)13006-2$$o10.1016/0076-6879(69)13006-2
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1432-1033.1972.tb01686.x$$o10.1111/j.1432-1033.1972.tb01686.x
000141163 999C5 $$2Crossref$$oTanpaiboon 2005$$y2005
000141163 999C5 $$2Crossref$$oToyoshima 1995$$y1995
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1079/BJN19960198$$o10.1079/BJN19960198
000141163 999C5 $$2Crossref$$oVenditti GeneReviews at GeneTests 2005$$tGeneReviews at GeneTests$$y2005
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1023/A:1005359416197$$o10.1023/A:1005359416197
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01800350$$o10.1007/BF01800350
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1471-4159.1982.tb11482.x$$o10.1111/j.1471-4159.1982.tb11482.x
000141163 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1074/jbc.M402759200$$o10.1074/jbc.M402759200