001     141262
005     20240321220933.0
024 7 _ |a 10.1016/j.jsb.2015.10.009
|2 doi
024 7 _ |a pmid:26470813
|2 pmid
024 7 _ |a 1047-8477
|2 ISSN
024 7 _ |a 1095-8657
|2 ISSN
037 _ _ |a DZNE-2020-07584
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Le Bihan, Olivier
|0 P:(DE-2719)2810962
|b 0
|e First author
|u dzne
245 _ _ |a Visualization of adherent cell monolayers by cryo-electron microscopy: A snapshot of endothelial adherens junctions.
260 _ _ |a San Diego, Calif.
|c 2015
|b Elsevier
264 _ 1 |3 print
|2 Crossref
|b Elsevier BV
|c 2015-12-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1709900463_26560
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Cryo-electron microscopy (cryo-EM) allows the visualization of the cell architecture in its native state. We developed a robust solution to adapt cryo-electron microscopy of vitreous sections (CEMOVIS) to a monolayer of adherent cells using a functionalized polyacrylamide hydrogel growing substrate. We applied this method to reconstitute an endothelial cell monolayer to visualize the morphology of adherens junctions (AJs) which regulate permeability and integrity of the vascular barrier. The fine morphology and ultrastructure of AJs from cultured primary human coronary artery endothelial cells (HCAECs) were analyzed in their native state by using CEMOVIS. Doxycycline and sphingosine-1-phosphate (S1P) are known as efficient regulators of endothelial permeability. Doxycycline and S1P treatments both led to a drastic morphological switch from very uneven to standardized 14-17 nm wide AJs over several microns indicative of a better membrane tethering. Repetitive structures were occasionally noticed within the AJ cleft reflecting a local improved structural organization of VE-cadherin molecules. The ultrastructural stabilization of AJs observed upon treatment likely indicates a better adhesion and thus provides structural clues on the mechanism by which these treatments improve the endothelial barrier function. This method was also successfully extended to a thick epithelial barrier model. We expect our strategy to extend the reliable application of CEMOVIS to virtually any adherent cultured cell systems.
536 _ _ |a 341 - Molecular Signaling (POF3-341)
|0 G:(DE-HGF)POF3-341
|c POF3-341
|f POF III
|x 0
542 _ _ |i 2015-12-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a Antigens, CD
|2 NLM Chemicals
650 _ 7 |a Cadherins
|2 NLM Chemicals
650 _ 7 |a Lysophospholipids
|2 NLM Chemicals
650 _ 7 |a cadherin 5
|2 NLM Chemicals
650 _ 7 |a sphingosine 1-phosphate
|0 26993-30-6
|2 NLM Chemicals
650 _ 7 |a Doxycycline
|0 N12000U13O
|2 NLM Chemicals
650 _ 7 |a Sphingosine
|0 NGZ37HRE42
|2 NLM Chemicals
650 _ 2 |a Adherens Junctions: physiology
|2 MeSH
650 _ 2 |a Antigens, CD: metabolism
|2 MeSH
650 _ 2 |a Caco-2 Cells
|2 MeSH
650 _ 2 |a Cadherins: metabolism
|2 MeSH
650 _ 2 |a Cell Line, Tumor
|2 MeSH
650 _ 2 |a Coronary Vessels: cytology
|2 MeSH
650 _ 2 |a Cryoelectron Microscopy: methods
|2 MeSH
650 _ 2 |a Doxycycline: pharmacology
|2 MeSH
650 _ 2 |a Endothelial Cells: cytology
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Lysophospholipids: pharmacology
|2 MeSH
650 _ 2 |a Sphingosine: analogs & derivatives
|2 MeSH
650 _ 2 |a Sphingosine: pharmacology
|2 MeSH
650 _ 2 |a Staining and Labeling
|2 MeSH
700 1 _ |a Decossas, Marion
|b 1
700 1 _ |a Gontier, Etienne
|b 2
700 1 _ |a Gerbod-Giannone, Marie-Christine
|b 3
700 1 _ |a Lambert, Olivier
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
773 1 8 |a 10.1016/j.jsb.2015.10.009
|b : Elsevier BV, 2015-12-01
|n 3
|p 470-477
|3 journal-article
|2 Crossref
|t Journal of Structural Biology
|v 192
|y 2015
|x 1047-8477
773 _ _ |a 10.1016/j.jsb.2015.10.009
|g Vol. 192, no. 3, p. 470 - 477
|0 PERI:(DE-600)1469822-5
|n 3
|q 192:3<470 - 477
|p 470-477
|t Journal of structural biology
|v 192
|y 2015
|x 1047-8477
856 4 _ |u https://pub.dzne.de/record/141262/files/DZNE-2020-07584_Restricted.pdf
856 4 _ |u https://pub.dzne.de/record/141262/files/DZNE-2020-07584_Restricted.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:pub.dzne.de:141262
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2810962
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-341
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Molecular Signaling
|x 0
914 1 _ |y 2015
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J STRUCT BIOL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-2719)1013012
|k AG Alamoudi
|l Cryo-electron microscopy and tomography
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1013012
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21