001     141303
005     20240321220936.0
024 7 _ |a 10.1038/npp.2014.72
|2 doi
024 7 _ |a pmid:24663011
|2 pmid
024 7 _ |a pmc:PMC4104340
|2 pmc
024 7 _ |a 0893-133X
|2 ISSN
024 7 _ |a 1740-634X
|2 ISSN
037 _ _ |a DZNE-2020-07625
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Lange, Maren D
|b 0
245 _ _ |a Glutamic acid decarboxylase 65: a link between GABAergic synaptic plasticity in the lateral amygdala and conditioned fear generalization.
260 _ _ |a Basingstoke
|c 2014
|b Nature Publishing Group71819
264 _ 1 |3 online
|2 Crossref
|b Springer Science and Business Media LLC
|c 2014-03-25
264 _ 1 |3 print
|2 Crossref
|b Springer Science and Business Media LLC
|c 2014-08-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1704878230_22401
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a An imbalance of the gamma-aminobutyric acid (GABA) system is considered a major neurobiological pathomechanism of anxiety, and the amygdala is a key brain region involved. Reduced GABA levels have been found in anxiety patients, and genetic variations of glutamic acid decarboxylase (GAD), the rate-limiting enzyme of GABA synthesis, have been associated with anxiety phenotypes in both humans and mice. These findings prompted us to hypothesize that a deficiency of GAD65, the GAD isoform controlling the availability of GABA as a transmitter, affects synaptic transmission and plasticity in the lateral amygdala (LA), and thereby interferes with fear responsiveness. Results indicate that genetically determined GAD65 deficiency in mice is associated with (1) increased synaptic length and release at GABAergic connections, (2) impaired efficacy of GABAergic synaptic transmission and plasticity, and (3) reduced spillover of GABA to presynaptic GABAB receptors, resulting in a loss of the associative nature of long-term synaptic plasticity at cortical inputs to LA principal neurons. (4) In addition, training with high shock intensities in wild-type mice mimicked the phenotype of GAD65 deficiency at both the behavioral and synaptic level, indicated by generalization of conditioned fear and a loss of the associative nature of synaptic plasticity in the LA. In conclusion, GAD65 is required for efficient GABAergic synaptic transmission and plasticity, and for maintaining extracellular GABA at a level needed for associative plasticity at cortical inputs in the LA, which, if disturbed, results in an impairment of the cue specificity of conditioned fear responses typifying anxiety disorders.
536 _ _ |a 341 - Molecular Signaling (POF3-341)
|0 G:(DE-HGF)POF3-341
|c POF3-341
|f POF III
|x 0
542 _ _ |i 2014-03-25
|2 Crossref
|u http://www.springer.com/tdm
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a Receptors, GABA-B
|2 NLM Chemicals
650 _ 7 |a Glutamic Acid
|0 3KX376GY7L
|2 NLM Chemicals
650 _ 7 |a gamma-Aminobutyric Acid
|0 56-12-2
|2 NLM Chemicals
650 _ 7 |a Glutamate Decarboxylase
|0 EC 4.1.1.15
|2 NLM Chemicals
650 _ 7 |a glutamate decarboxylase 2
|0 EC 4.1.1.15
|2 NLM Chemicals
650 _ 2 |a Amygdala: cytology
|2 MeSH
650 _ 2 |a Amygdala: enzymology
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Association Learning: physiology
|2 MeSH
650 _ 2 |a Conditioning, Psychological: physiology
|2 MeSH
650 _ 2 |a Electroshock
|2 MeSH
650 _ 2 |a Extracellular Space: metabolism
|2 MeSH
650 _ 2 |a Fear: physiology
|2 MeSH
650 _ 2 |a Generalization, Psychological: physiology
|2 MeSH
650 _ 2 |a Glutamate Decarboxylase: genetics
|2 MeSH
650 _ 2 |a Glutamate Decarboxylase: metabolism
|2 MeSH
650 _ 2 |a Glutamic Acid: metabolism
|2 MeSH
650 _ 2 |a Interneurons: cytology
|2 MeSH
650 _ 2 |a Interneurons: physiology
|2 MeSH
650 _ 2 |a Long-Term Potentiation: physiology
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Mice, Inbred C57BL
|2 MeSH
650 _ 2 |a Mice, Knockout
|2 MeSH
650 _ 2 |a Neurons: cytology
|2 MeSH
650 _ 2 |a Neurons: physiology
|2 MeSH
650 _ 2 |a Receptors, GABA-B: metabolism
|2 MeSH
650 _ 2 |a Synaptic Transmission: physiology
|2 MeSH
650 _ 2 |a gamma-Aminobutyric Acid: metabolism
|2 MeSH
700 1 _ |a Jüngling, Kay
|b 1
700 1 _ |a Paulukat, Linda
|b 2
700 1 _ |a Vieler, Marc
|b 3
700 1 _ |a Gaburro, Stefano
|b 4
700 1 _ |a Sosulina, Liudmila
|0 P:(DE-2719)2810715
|b 5
|u dzne
700 1 _ |a Blaesse, Peter
|b 6
700 1 _ |a Sreepathi, Hari K
|b 7
700 1 _ |a Ferraguti, Francesco
|b 8
700 1 _ |a Pape, Hans-Christian
|0 P:(DE-HGF)0
|b 9
|e Corresponding author
773 1 8 |a 10.1038/npp.2014.72
|b Springer Science and Business Media LLC
|d 2014-03-25
|n 9
|p 2211-2220
|3 journal-article
|2 Crossref
|t Neuropsychopharmacology
|v 39
|y 2014
|x 0893-133X
773 _ _ |a 10.1038/npp.2014.72
|g Vol. 39, no. 9, p. 2211 - 2220
|0 PERI:(DE-600)2008300-2
|n 9
|q 39:9<2211 - 2220
|p 2211-2220
|t Neuropsychopharmacology
|v 39
|y 2014
|x 0893-133X
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4104340
856 4 _ |u https://pub.dzne.de/record/141303/files/DZNE-2020-07625_Restricted.pdf
856 4 _ |u https://pub.dzne.de/record/141303/files/DZNE-2020-07625_Restricted.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:pub.dzne.de:141303
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2810715
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-341
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Molecular Signaling
|x 0
914 1 _ |y 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROPSYCHOPHARMACOL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROPSYCHOPHARMACOL : 2015
920 1 _ |0 I:(DE-2719)1013006
|k AG Remy
|l Neuronal Networks
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1013006
980 _ _ |a UNRESTRICTED
999 C 5 |a 10.1017/S1461145709991106
|9 -- missing cx lookup --
|1 A Albrecht
|p 661 -
|2 Crossref
|u Albrecht A, Bergado-Acosta JR, Pape HC, Stork O (2010). Role of the neural cell adhesion molecule (NCAM) in amygdalo-hippocampal interactions and salience determination of contextual fear memory. Int J Neuropsychopharmacol 13: 661–674.
|t Int J Neuropsychopharmacol
|v 13
|y 2010
999 C 5 |a 10.1006/bbrc.1996.1898
|9 -- missing cx lookup --
|1 H Asada
|p 891 -
|2 Crossref
|u Asada H, Kawamura Y, Maruyama K, Kume H, Ding R, Ji FY et al (1996). Mice lacking the 65 kDa isoform of glutamic acid decarboxylase (GAD65) maintain normal levels of GAD67 and GABA in their brains but are susceptible to seizures. Biochem Biophys Res Commun 229: 891–895.
|t Biochem Biophys Res Commun
|v 229
|y 1996
999 C 5 |a 10.1046/j.1471-4159.2003.01910.x
|9 -- missing cx lookup --
|1 G Battaglioli
|p 879 -
|2 Crossref
|u Battaglioli G, Liu H, Martin DL (2003). Kinetic differences between the isoforms of glutamate decarboxylase: implications for the regulation of GABA synthesis. J Neurochem 86: 879–887.
|t J Neurochem
|v 86
|y 2003
999 C 5 |a 10.1523/JNEUROSCI.22-12-05239.2002
|9 -- missing cx lookup --
|1 EP Bauer
|p 5239 -
|2 Crossref
|u Bauer EP, Schafe GE, LeDoux JE (2002). NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala. J Neurosci 22: 5239–5249.
|t J Neurosci
|v 22
|y 2002
999 C 5 |a 10.1101/lm.705408
|9 -- missing cx lookup --
|1 JR Bergado-Acosta
|p 163 -
|2 Crossref
|u Bergado-Acosta JR, Sangha S, Narayanan RT, Obata K, Pape HC, Stork O (2008). Critical role of the 65-kDa isoform of glutamic acid decarboxylase in consolidation and generalization of Pavlovian fear memory. Learn Mem 15: 163–171.
|t Learn Mem
|v 15
|y 2008
999 C 5 |a 10.1523/JNEUROSCI.18-15-05938.1998
|9 -- missing cx lookup --
|1 G Bowers
|p 5938 -
|2 Crossref
|u Bowers G, Cullinan WE, Herman JP (1998). Region-specific regulation of glutamic acid decarboxylase (GAD) mRNA expression in central stress circuits. J Neurosci 18: 5938–5947.
|t J Neurosci
|v 18
|y 1998
999 C 5 |a 10.1038/npp.2012.3
|9 -- missing cx lookup --
|1 F Chauveau
|p 1588 -
|2 Crossref
|u Chauveau F, Lange MD, Jüngling K, Lesting J, Seidenbecher T, Pape HC (2012). Prevention of stress-impaired fear extinction through neuropeptide s action in the lateral amygdala. Neuropsychopharmacol 37: 1588–1599.
|t Neuropsychopharmacol
|v 37
|y 2012
999 C 5 |a 10.1016/j.pnpbp.2013.07.014
|9 -- missing cx lookup --
|1 K Domschke
|p 189 -
|2 Crossref
|u Domschke K, Tidow N, Schrempf M, Schwarte K, Klauke B, Reif A et al (2013). Epigenetic signature of panic disorder: a role of glutamate decarboxylase 1 (GAD1) DNA hypomethylation? Prog Neuropsychopharmacol Biol Psychiatry 46: 189–196.
|t Prog Neuropsychopharmacol Biol Psychiatry
|v 46
|y 2013
999 C 5 |a 10.1016/j.neuron.2009.05.026
|9 -- missing cx lookup --
|1 I Ehrlich
|p 757 -
|2 Crossref
|u Ehrlich I, Humeau Y, Grenier F, Ciocchi S, Herry C, Lüthi A (2009). Amygdala inhibitory circuits and the control of fear memory. Neuron 62: 757–771.
|t Neuron
|v 62
|y 2009
999 C 5 |a 10.1016/0896-6273(91)90077-D
|9 -- missing cx lookup --
|1 MG Erlander
|p 91 -
|2 Crossref
|u Erlander MG, Tillakaratne NJ, Feldblum S, Patel N, Tobin AJ (1991). Two genes encode distinct glutamate decarboxylases. Neuron 7: 91–100.
|t Neuron
|v 7
|y 1991
999 C 5 |a 10.1371/journal.pone.0002979
|9 -- missing cx lookup --
|1 K Hartmann
|p e2979 -
|2 Crossref
|u Hartmann K, Bruehl C, Golovko T, Draguhn A (2008). Fast homeostatic plasticity of inhibition via activity-dependent vesicular filling. PLoS One 3: e2979.
|t PLoS One
|v 3
|y 2008
999 C 5 |a 10.1111/j.1460-9568.2007.05970.x
|9 -- missing cx lookup --
|1 SA Heldt
|p 3631 -
|2 Crossref
|u Heldt SA, Ressler KJ (2007). Training-induced changes in the expression of GABAA-associated genes in the amygdala after the acquisition and extinction of Pavlovian fear. Eur J Neurosci 26: 3631–3644.
|t Eur J Neurosci
|v 26
|y 2007
999 C 5 |a 10.1038/sj.mp.4001845
|9 -- missing cx lookup --
|1 JM Hettema
|p 752 -
|2 Crossref
|u Hettema JM, An SS, Neale MC, Bukszar J, van den Oord EJ, Kendler KS et al (2006). Association between glutamic acid decarboxylase genes and anxiety disorders, major depression, and neuroticism. Mol Psychiatry 11: 752–762.
|t Mol Psychiatry
|v 11
|y 2006
999 C 5 |a 10.1038/nature02194
|9 -- missing cx lookup --
|1 Y Humeau
|p 841 -
|2 Crossref
|u Humeau Y, Shaban H, Bissiere S, Lüthi A (2003). Presynaptic induction of heterosynaptic associative plasticity in the mammalian brain. Nature 426: 841–845.
|t Nature
|v 426
|y 2003
999 C 5 |a 10.1073/pnas.0730698100
|9 -- missing cx lookup --
|1 H Jin
|p 4293 -
|2 Crossref
|u Jin H, Wu H, Osterhaus G, Wie J, Davis K, Sha D et al (2003). Demonstration of functionalcoupling between gamma -aminobutyricacid (GABA) synthesis and vesicular GABA transport into synapticvesicles. Proc Natl Acad Sci USA 100: 4293–4298.
|t Proc Natl Acad Sci USA
|v 100
|y 2003
999 C 5 |1 K Kasa
|y 1982
|2 Crossref
|u Kasa K, Otsuki S, Yamamoto M, Sato M, Kuroda H, Ogawa N (1982). Cerebrospinal fluid gamma-aminobutyric acid and homovanillic acid in depressive disorders. Biol Psychiatry 17: 877–883.
999 C 5 |a 10.1073/pnas.94.25.14060
|9 -- missing cx lookup --
|1 SF Kash
|p 14060 -
|2 Crossref
|u Kash SF, Johnson RS, Tecott L, Noebels JL, Mayfield RD, Hanahan D et al (1997). Epilepsy in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci USA 94: 14060–14065.
|t Proc Natl Acad Sci USA
|v 94
|y 1997
999 C 5 |a 10.1073/pnas.96.4.1698
|9 -- missing cx lookup --
|1 SF Kash
|p 1698 -
|2 Crossref
|u Kash SF, Tecott LH, Hodge C, Baekkeskov S (1999). Increased anxiety and altered responses to anxiolytics in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci 96: 1698–1703.
|t Proc Natl Acad Sci
|v 96
|y 1999
999 C 5 |a 10.1111/j.1471-4159.1991.tb08211.x
|9 -- missing cx lookup --
|1 DL Kaufman
|p 720 -
|2 Crossref
|u Kaufman DL, Houser CR, Tobin AJ (1991). Two forms of the gamma-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. J Neurochem 56: 720–723.
|t J Neurochem
|v 56
|y 1991
999 C 5 |a 10.1517/14728222.9.1.153
|9 -- missing cx lookup --
|1 SF Kendell
|p 153 -
|2 Crossref
|u Kendell SF, Krystal JH, Sanacora G (2005). GABA and glutamate systems as therapeutic targets in depression and mood disorders Expert Opin. Ther Targets 9: 153–168.
|t Ther Targets
|v 9
|y 2005
999 C 5 |a 10.1001/archpsyc.62.6.593
|9 -- missing cx lookup --
|1 RC Kessler
|p 593 -
|2 Crossref
|u Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE (2005). Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 62: 593–602.
|t Arch Gen Psychiatry
|v 62
|y 2005
999 C 5 |a 10.1124/jpet.109.156034
|9 -- missing cx lookup --
|1 K Kubo
|p 162 -
|2 Crossref
|u Kubo K, Nishikawa K, Ishizeki J, Hardy-Yamada M, Yanagawa Y, Saito S (2009). Thermal hyperalgesia via supraspinal mechanisms in mice lacking glutamate decarboxylase 65. J Pharmacol Exp Ther 331: 162–169.
|t J Pharmacol Exp Ther
|v 331
|y 2009
999 C 5 |a 10.1113/jphysiol.2011.221317
|9 -- missing cx lookup --
|1 MD Lange
|p 131 -
|2 Crossref
|u Lange M.D, Doengi M, Lesting J, Pape HC, Jüngling K (2012). Heterosynaptic long-term potentiation at interneuron-principal neuron synapses in the amygdala requires nitric oxide signalling. J Physiol 590: 131–143.
|t J Physiol
|v 590
|y 2012
999 C 5 |a 10.1016/S0166-4328(03)00101-3
|9 -- missing cx lookup --
|1 TR Laxmi
|p 89 -
|2 Crossref
|u Laxmi TR, Stork O, Pape HC (2003). Generalisation of conditioned fear and its behavioural expression in mice. Behav Brain Res 145: 89–98.
|t Behav Brain Res
|v 145
|y 2003
999 C 5 |a 10.1002/da.21922
|9 -- missing cx lookup --
|1 S Lissek
|p 257 -
|2 Crossref
|u Lissek S (2012). Toward an account of clinical anxiety predicated on basic, neurally mapped mechanisms of Pavlovian fear-learning: the case for conditioned overgeneralization. Depress Anxiety 29: 257–263.
|t Depress Anxiety
|v 29
|y 2012
999 C 5 |a 10.1111/j.1471-4159.1993.tb03165.x
|9 -- missing cx lookup --
|1 DL Martin
|p 395 -
|2 Crossref
|u Martin DL, Rimvall K (1993). Regulation of α-aminobutyric acid synthesis in the brain. J Neurochem 60: 395–407.
|t J Neurochem
|v 60
|y 1993
999 C 5 |a 10.1016/S0896-6273(01)00500-1
|9 -- missing cx lookup --
|1 VN Murthy
|p 673 -
|2 Crossref
|u Murthy VN, Schikorski T, Stevens CF, Zhu Y (2001). Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32: 673–682.
|t Neuron
|v 32
|y 2001
999 C 5 |a 10.1016/j.neuron.2009.01.029
|9 -- missing cx lookup --
|1 BX Pan
|p 917 -
|2 Crossref
|u Pan BX, Dong Y, Ito W, Yanagawa Y, Shigemoto R, Morozov A (2009). Selective gating of glutamatergic inputs to excitatory neurons of amygdala by presynaptic GABAb receptors. Neuron 61: 917–929.
|t Neuron
|v 61
|y 2009
999 C 5 |a 10.1152/physrev.00037.2009
|9 -- missing cx lookup --
|1 HC Pape
|p 419 -
|2 Crossref
|u Pape HC, Pare D (2010). Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev 90: 419–463.
|t Physiol Rev
|v 90
|y 2010
999 C 5 |a 10.1111/j.1471-4159.2006.03741.x
|9 -- missing cx lookup --
|1 AB Patel
|p 385 -
|2 Crossref
|u Patel AB, de Graaf RA, Martin DL, Battaglioli G, Behar KL (2006). Evidence that GAD65 mediates increased GABA synthesis during intense neuronal activity in vivo. J Neurochem 97: 385–396.
|t J Neurochem
|v 97
|y 2006
999 C 5 |1 G Paxinos
|y 2001
|2 Crossref
|u Paxinos G, Franklin KBJ (2001) The Mouse Brain in Stereotaxic Coordinates 2nd edn. Elsevier Academic Press: San Diego.
|t The Mouse Brain in Stereotaxic Coordinates
999 C 5 |a 10.1016/0165-0327(84)90018-1
|9 -- missing cx lookup --
|1 F Petty
|p 131 -
|2 Crossref
|u Petty F, Sherman AD (1984). Plasma GABA levels in psychiatric illness. J Affect Disord 6: 131–138.
|t J Affect Disord
|v 6
|y 1984
999 C 5 |a 10.1038/sj.mp.4000569
|9 -- missing cx lookup --
|1 F Petty
|p 587 -
|2 Crossref
|u Petty F, Fulton M, Kramer GL (1999). Evidence for the segregation of a major gene for human plasma GABA levels. Mol Psychiatry 4: 587–589.
|t Mol Psychiatry
|v 4
|y 1999
999 C 5 |a 10.1016/0306-4522(94)90071-X
|9 -- missing cx lookup --
|1 JP Pierce
|p 441 -
|2 Crossref
|u Pierce JP, Lewin GR (1994). An ultrastructural size principle. Neuroscience 58: 441–446.
|t Neuroscience
|v 58
|y 1994
999 C 5 |a 10.1523/JNEUROSCI.6165-09.2010
|9 -- missing cx lookup --
|1 DJ Rademacher
|p 4676 -
|2 Crossref
|u Rademacher DJ, Rosenkranz JA, Morshedi MM, Sullivan EM, Meredith GE (2010). Amphetamine-associated contextual learning is accompanied by structural and functional plasticity in the basolateral amygdala. J Neurosci 30: 4676–4686.
|t J Neurosci
|v 30
|y 2010
999 C 5 |a 10.1101/lm.025874.112
|9 -- missing cx lookup --
|1 S Sangha
|p 194 -
|2 Crossref
|u Sangha S, Ilenseer J, Sosulina L, Lesting J, Pape HC (2012). Differential regulation of glutamic acid decarboxylase gene expression after extinction of a recent memory vs intermediate memory. Learn Mem 19: 194–200.
|t Learn Mem
|v 19
|y 2012
999 C 5 |a 10.1523/JNEUROSCI.2620-09.2009
|9 -- missing cx lookup --
|1 S Sangha
|p 15713 -
|2 Crossref
|u Sangha S, Narayanan RT, Bergado-Acosta JR, Stork O, Seidenbecher T, Pape HC (2009). Deficiency of the 65 kDa isoform of glutamic acid decarboxylase impairs extinction of cued but not contextual fear memory. J Neurosci 29: 15713–15720.
|t J Neurosci
|v 29
|y 2009
999 C 5 |a 10.1152/physrev.00002.2003
|9 -- missing cx lookup --
|1 P Sah
|p 803 -
|2 Crossref
|u Sah P, Faber ES, Lopez D, Armentia M, Power J (2003). The amygdaloid complex: anatomy and physiology. Physiol Rev 83: 803–834.
|t Physiol Rev
|v 83
|y 2003
999 C 5 |a 10.1038/nn1732
|9 -- missing cx lookup --
|1 H Shaban
|p 1028 -
|2 Crossref
|u Shaban H, Humeau Y, Herry C, Cassasus G, Shigemoto R, Ciocchi S et al (2006). Generalization of amygdala LTP and conditioned fear in the absence of presynaptic inhibition. Nat Neurosci 9: 1028–1035.
|t Nat Neurosci
|v 9
|y 2006
999 C 5 |a 10.1002/ajmg.1328
|9 -- missing cx lookup --
|1 JW Smoller
|p 226 -
|2 Crossref
|u Smoller JW, Rosenbaum JF, Biederman J, Susswein LS, Kennedy J, Kagan J et al (2001). Genetic association analysis of behavioral inhibition using candidate loci from mouse models. Am J Med Genet 105: 226–235.
|t Am J Med Genet
|v 105
|y 2001
999 C 5 |a 10.1016/j.mcn.2006.06.005
|9 -- missing cx lookup --
|1 L Sosulina
|p 57 -
|2 Crossref
|u Sosulina L, Meis S, Seifert G, Steinhäuser C, Pape HC (2006). Classification of projection neurons and interneurons in the rat lateral amygdala based upon cluster analysis. Mol Cell Neurosci 33: 57–67.
|t Mol Cell Neurosci
|v 33
|y 2006
999 C 5 |a 10.1016/j.neuroscience.2011.12.006
|9 -- missing cx lookup --
|1 HK Sreepathi
|p 59 -
|2 Crossref
|u Sreepathi HK, Ferraguti F (2012). Subpopulations of NK1-expressing interneurons in the rat lateral amygdala display a differential pattern of innervation from distinct glutamatergic afferents. Neuroscience 203: 59–77.
|t Neuroscience
|v 203
|y 2012
999 C 5 |a 10.1016/S0304-3940(02)00387-7
|9 -- missing cx lookup --
|1 O Stork
|p 138 -
|2 Crossref
|u Stork O, Ji FY, Obata K (2002). Reduction of extracellular GABA in the mouse amygdala during and following confrontation with a conditioned fear stimulus. Neurosci Lett 327: 138–142.
|t Neurosci Lett
|v 327
|y 2002
999 C 5 |a 10.1523/JNEUROSCI.20-23-08909.2000
|9 -- missing cx lookup --
|1 T Szinyei
|p 8909 -
|2 Crossref
|u Szinyei T, Heinbockel J, Montagne J, Pape HC (2000). Putative cortical and thalamic inputs elicit convergent excitation in a population of GABAergic interneurons of the lateral amygdala. J Neurosci 20: 8909–8915.
|t J Neurosci
|v 20
|y 2000
999 C 5 |a 10.1111/j.1460-9568.2007.05349.x
|9 -- missing cx lookup --
|1 C Szinyei
|p 1205 -
|2 Crossref
|u Szinyei C, Narayanan RT, Pape HC (2007). Plasticity of inhibitory synaptic network interactions in the lateral amygdala upon fear conditioning in mice. Eur J Neurosci 25: 1205–1211.
|t Eur J Neurosci
|v 25
|y 2007
999 C 5 |a 10.1002/ajmg.b.30938
|9 -- missing cx lookup --
|1 PG Unschuld
|p 1100 -
|2 Crossref
|u Unschuld PG, Ising M, Specht M, Erhardt A, Ripke S, Heck A et al (2009). Polymorphisms in the GAD2 gene-region are associated with susceptibility for unipolar depression and with a risk factor for anxiety disorders. Am J Med Genet B Neuropsychiatr Genet 150: 1100–1109.
|t Am J Med Genet B Neuropsychiatr Genet
|v 150
|y 2009
999 C 5 |a 10.1007/s11064-008-9600-5
|9 -- missing cx lookup --
|1 J Wei
|p 1459 -
|2 Crossref
|u Wei J, Wu JY (2008). Post-translational regulation of L-glutamic acid decarboxylase in the brain. Neurochem Res 33: 1459–1465.
|t Neurochem Res
|v 33
|y 2008
999 C 5 |a 10.1038/nm.2442
|9 -- missing cx lookup --
|1 Z Zhang
|p 1448 -
|2 Crossref
|u Zhang Z, Cai YQ, Zou F, Bie B, Pan ZZ (2011). Epigenetic suppression of GAD65 expression mediates persistent pain. Nat Med 17: 1448–1455.
|t Nat Med
|v 17
|y 2011


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21