000141514 001__ 141514 000141514 005__ 20240529141904.0 000141514 0247_ $$2doi$$a10.1016/j.neuroimage.2019.116074 000141514 0247_ $$2pmid$$apmid:31386919 000141514 0247_ $$2ISSN$$a1053-8119 000141514 0247_ $$2ISSN$$a1095-9572 000141514 0247_ $$2altmetric$$aaltmetric:64718987 000141514 037__ $$aDZNE-2020-07838 000141514 041__ $$aEnglish 000141514 082__ $$a610 000141514 1001_ $$0P:(DE-2719)2811255$$aChen, Xiaoli$$b0$$eFirst author$$udzne 000141514 245__ $$aComputing distance information from landmarks and self-motion cues - Differential contributions of anterior-lateral vs. posterior-medial entorhinal cortex in humans. 000141514 260__ $$aOrlando, Fla.$$bAcademic Press$$c2019 000141514 264_1 $$2Crossref$$3print$$bElsevier BV$$c2019-11-01 000141514 3367_ $$2DRIVER$$aarticle 000141514 3367_ $$2DataCite$$aOutput Types/Journal article 000141514 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1702629645_27992 000141514 3367_ $$2BibTeX$$aARTICLE 000141514 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000141514 3367_ $$00$$2EndNote$$aJournal Article 000141514 520__ $$aLandmarks and path integration cues are two important sources of spatial information for navigation. For example, both can be used to compute positional information, which, in rodents, has been related to computations in the entorhinal cortex. In humans, however, if and how the entorhinal cortex supports landmark-based navigation and path integration is poorly understood. To address this important question, we developed a novel spatial navigation task in which participants learned a target location and judged relative positions of test locations in relation to the target. Landmarks and path integration cues were dissociated, and their reliability levels were manipulated. Using fMRI adaptation, we investigated whether spatial distances among the test locations were encoded in the BOLD responses, separately for landmarks and self-motion cues. The results showed that the anterior-lateral entorhinal cortex adapted to the distance between successively visited test locations when landmarks were used for localization, meaning that its activation decreased as the distance between the currently occupied location and the preceding location decreased. In contrast, the posterior-medial entorhinal cortex adapted to between-location distance when path integration cues were used for localization. In addition, along with the hippocampus and the precuneus, both entorhinal subregions showed stronger activation in correct trials than incorrect trials, regardless of cue type and reliability level. Together, these findings suggest that subdivisions of entorhinal cortex encode fine-grained spatial information for different spatial cues, which provides important insights into how the entorhinal cortex supports different modes of spatial navigation. 000141514 536__ $$0G:(DE-HGF)POF3-344$$a344 - Clinical and Health Care Research (POF3-344)$$cPOF3-344$$fPOF III$$x0 000141514 542__ $$2Crossref$$i2019-11-01$$uhttps://www.elsevier.com/tdm/userlicense/1.0/ 000141514 588__ $$aDataset connected to CrossRef, PubMed, 000141514 650_2 $$2MeSH$$aAdult 000141514 650_2 $$2MeSH$$aCues 000141514 650_2 $$2MeSH$$aEntorhinal Cortex: physiology 000141514 650_2 $$2MeSH$$aFemale 000141514 650_2 $$2MeSH$$aHumans 000141514 650_2 $$2MeSH$$aMagnetic Resonance Imaging 000141514 650_2 $$2MeSH$$aMale 000141514 650_2 $$2MeSH$$aSpatial Navigation: physiology 000141514 650_2 $$2MeSH$$aYoung Adult 000141514 7001_ $$0P:(DE-HGF)0$$aVieweg, Paula$$b1 000141514 7001_ $$0P:(DE-2719)2810583$$aWolbers, Thomas$$b2$$udzne 000141514 77318 $$2Crossref$$3journal-article$$a10.1016/j.neuroimage.2019.116074$$b : Elsevier BV, 2019-11-01$$p116074$$tNeuroImage$$v202$$x1053-8119$$y2019 000141514 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2019.116074$$gVol. 202, p. 116074 -$$p116074$$q202<116074 -$$tNeuroImage$$v202$$x1053-8119$$y2019 000141514 8564_ $$uhttps://pub.dzne.de/record/141514/files/DZNE-2020-07838_Restricted.pdf 000141514 8564_ $$uhttps://pub.dzne.de/record/141514/files/DZNE-2020-07838_Restricted.pdf?subformat=pdfa$$xpdfa 000141514 909CO $$ooai:pub.dzne.de:141514$$pVDB 000141514 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811255$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE 000141514 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810583$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE 000141514 9131_ $$0G:(DE-HGF)POF3-344$$1G:(DE-HGF)POF3-340$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lErkrankungen des Nervensystems$$vClinical and Health Care Research$$x0 000141514 9141_ $$y2019 000141514 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-12$$wger 000141514 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2021$$d2022-11-12 000141514 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12 000141514 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12 000141514 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-09-27T20:29:23Z 000141514 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-09-27T20:29:23Z 000141514 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12 000141514 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12 000141514 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12 000141514 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12 000141514 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-12 000141514 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-12 000141514 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2021$$d2022-11-12 000141514 9201_ $$0I:(DE-2719)1310002$$kAG Wolbers$$lAging, Cognition and Technology$$x0 000141514 980__ $$ajournal 000141514 980__ $$aVDB 000141514 980__ $$aI:(DE-2719)1310002 000141514 980__ $$aUNRESTRICTED