001     141551
005     20240321220956.0
024 7 _ |a 10.1523/JNEUROSCI.2594-18.2019
|2 doi
024 7 _ |a pmid:31519822
|2 pmid
024 7 _ |a pmc:PMC6832680
|2 pmc
024 7 _ |a 0270-6474
|2 ISSN
024 7 _ |a 1529-2401
|2 ISSN
024 7 _ |a altmetric:67514802
|2 altmetric
037 _ _ |a DZNE-2020-07875
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Pothmann, Leonie
|b 0
245 _ _ |a Altered Dynamics of Canonical Feedback Inhibition Predicts Increased Burst Transmission in Chronic Epilepsy.
260 _ _ |a Washington, DC
|c 2019
|b Soc.61474
264 _ 1 |3 online
|2 Crossref
|b Society for Neuroscience
|c 2019-09-13
264 _ 1 |3 print
|2 Crossref
|b Society for Neuroscience
|c 2019-11-06
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1593153659_30937
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Inhibitory interneurons, organized into canonical feedforward and feedback motifs, play a key role in controlling normal and pathological neuronal activity. We demonstrate prominent quantitative changes in the dynamics of feedback inhibition in a rat model of chronic epilepsy (male Wistar rats). Systematic interneuron recordings revealed a large decrease in intrinsic excitability of basket cells and oriens-lacunosum moleculare interneurons in epileptic animals. Additionally, the temporal dynamics of interneuron recruitment by recurrent feedback excitation were strongly altered, resulting in a profound loss of initial feedback inhibition during synchronous CA1 pyramidal activity. Biophysically constrained models of the complete feedback circuit motifs of normal and epileptic animals revealed that, as a consequence of altered feedback inhibition, burst activity arising in CA3 is more strongly converted to a CA1 output. This suggests that altered dynamics of feedback inhibition promote the transmission of epileptiform bursts to hippocampal projection areas.SIGNIFICANCE STATEMENT We quantitatively characterized changes of the CA1 feedback inhibitory circuit in a model of chronic temporal lobe epilepsy. This study shows, for the first time, that dynamic recruitment of inhibition in feedback circuits is altered and establishes the cellular mechanisms for this change. Computational modeling revealed that the observed changes are likely to systematically alter CA1 input-output properties leading to (1) increased seizure propagation through CA1 and (2) altered computation of synchronous CA3 input.
536 _ _ |a 342 - Disease Mechanisms and Model Systems (POF3-342)
|0 G:(DE-HGF)POF3-342
|c POF3-342
|f POF III
|x 0
542 _ _ |i 2020-05-06
|2 Crossref
|u https://creativecommons.org/licenses/by-nc-sa/4.0/
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 2 |a Action Potentials
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a CA1 Region, Hippocampal: physiopathology
|2 MeSH
650 _ 2 |a Epilepsy: physiopathology
|2 MeSH
650 _ 2 |a Feedback, Physiological
|2 MeSH
650 _ 2 |a Interneurons: physiology
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Models, Neurological
|2 MeSH
650 _ 2 |a Neural Inhibition
|2 MeSH
650 _ 2 |a Pyramidal Cells: physiology
|2 MeSH
650 _ 2 |a Rats
|2 MeSH
650 _ 2 |a Rats, Wistar
|2 MeSH
700 1 _ |a Klos, Christian
|b 1
700 1 _ |a Braganza, Oliver
|b 2
700 1 _ |a Schmidt, Sarah
|b 3
700 1 _ |a Horno, Oihane
|b 4
700 1 _ |a Memmesheimer, Raoul-Martin
|b 5
700 1 _ |a Beck, Heinz
|0 P:(DE-2719)2000044
|b 6
|e Last author
|u dzne
773 1 8 |a 10.1523/jneurosci.2594-18.2019
|b Society for Neuroscience
|d 2019-09-13
|n 45
|p 8998-9012
|3 journal-article
|2 Crossref
|t The Journal of Neuroscience
|v 39
|y 2019
|x 0270-6474
773 _ _ |a 10.1523/JNEUROSCI.2594-18.2019
|g Vol. 39, no. 45, p. 8998 - 9012
|0 PERI:(DE-600)1475274-8
|n 45
|q 39:45<8998 - 9012
|p 8998-9012
|t The journal of neuroscience
|v 39
|y 2019
|x 0270-6474
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832680
909 C O |o oai:pub.dzne.de:141551
|p VDB
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2000044
913 1 _ |a DE-HGF
|b Forschungsbereich Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-342
|2 G:(DE-HGF)POF3-300
|v Disease Mechanisms and Model Systems
|x 0
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NEUROSCI : 2021
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-13
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-13
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J NEUROSCI : 2021
|d 2022-11-13
920 1 _ |0 I:(DE-2719)7000005
|k U Preclinical Researchers - Bonn
|l U Preclinical Researchers - Bonn
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)7000005
980 _ _ |a UNRESTRICTED
999 C 5 |a 10.1002/hipo.1060
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/JNEUROSCI.2992-05.2005
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/JNEUROSCI.1421-08.2008
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/JNEUROSCI.4049-15.2016
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/hipo.22488
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/82900
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1073/pnas.94.22.12151
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.neuron.2007.07.040
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nn.2384
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0920-1211(96)00054-X
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/JNEUROSCI.3357-10.2010
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1093/brain/awq070
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1093/bioinformatics/btr390
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1073/pnas.95.9.5323
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1113/jphysiol.1990.sp018200
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.neuron.2012.06.025
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.celrep.2018.10.066
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/JNEUROSCI.2045-13.2013
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/JNEUROSCI.2395-13.2014
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature02615
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1113/jphysiol.2002.036376
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1113/jphysiol.2004.078915
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1113/jphysiol.1995.sp020521
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/JNEUROSCI.22-09-03645.2002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1222482
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/ncomms5501
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.neuron.2017.05.032
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0306-4522(93)90404-4
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1093/brain/awh339
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/JNEUROSCI.1183-10.2010
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1113/jphysiol.2007.127670
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/hipo.450050110
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1523/JNEUROSCI.6199-08.2009
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21