001     141557
005     20240618101733.0
024 7 _ |a 10.1016/S1474-4422(19)30283-2
|2 doi
024 7 _ |a pmid:31526625
|2 pmid
024 7 _ |a 1474-4422
|2 ISSN
024 7 _ |a 1474-4465
|2 ISSN
024 7 _ |a altmetric:66575888
|2 altmetric
037 _ _ |a DZNE-2020-07881
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a van Maurik, Ingrid S
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Biomarker-based prognosis for people with mild cognitive impairment (ABIDE): a modelling study.
260 _ _ |a London
|c 2019
|b Lancet Publ. Group
264 _ 1 |3 print
|2 Crossref
|b Elsevier BV
|c 2019-11-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1718698613_13422
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Biomarker-based risk predictions of dementia in people with mild cognitive impairment are highly relevant for care planning and to select patients for treatment when disease-modifying drugs become available. We aimed to establish robust prediction models of disease progression in people at risk of dementia.In this modelling study, we included people with mild cognitive impairment (MCI) from single-centre and multicentre cohorts in Europe and North America: the European Medical Information Framework for Alzheimer's Disease (EMIF-AD; n=883), Alzheimer's Disease Neuroimaging Initiative (ADNI; n=829), Amsterdam Dementia Cohort (ADC; n=666), and the Swedish BioFINDER study (n=233). Inclusion criteria were a baseline diagnosis of MCI, at least 6 months of follow-up, and availability of a baseline Mini-Mental State Examination (MMSE) and MRI or CSF biomarker assessment. The primary endpoint was clinical progression to any type of dementia. We evaluated performance of previously developed risk prediction models-a demographics model, a hippocampal volume model, and a CSF biomarkers model-by evaluating them across cohorts, incorporating different biomarker measurement methods, and determining prognostic performance with Harrell's C statistic. We then updated the models by re-estimating parameters with and without centre-specific effects and evaluated model calibration by comparing observed and expected survival. Finally, we constructed a model combining markers for amyloid deposition, tauopathy, and neurodegeneration (ATN), in accordance with the National Institute on Aging and Alzheimer's Association research framework.We included all 2611 individuals with MCI in the four cohorts, 1007 (39%) of whom progressed to dementia. The validated demographics model (Harrell's C 0·62, 95% CI 0·59-0·65), validated hippocampal volume model (0·67, 0·62-0·72), and updated CSF biomarkers model (0·72, 0·68-0·74) had adequate prognostic performance across cohorts and were well calibrated. The newly constructed ATN model had the highest performance (0·74, 0·71-0·76).We generated risk models that are robust across cohorts, which adds to their potential clinical applicability. The models could aid clinicians in the interpretation of CSF biomarker and hippocampal volume results in individuals with MCI, and help research and clinical settings to prepare for a future of precision medicine in Alzheimer's disease. Future research should focus on the clinical utility of the models, particularly if their use affects participants' understanding, emotional wellbeing, and behaviour.ZonMW-Memorabel.
536 _ _ |a 342 - Disease Mechanisms and Model Systems (POF3-342)
|0 G:(DE-HGF)POF3-342
|c POF3-342
|f POF III
|x 0
536 _ _ |a 344 - Clinical and Health Care Research (POF3-344)
|0 G:(DE-HGF)POF3-344
|c POF3-344
|f POF III
|x 1
542 _ _ |i 2019-11-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 2 |a Aged
|2 MeSH
650 _ 2 |a Aged, 80 and over
|2 MeSH
650 _ 2 |a Alzheimer Disease: cerebrospinal fluid
|2 MeSH
650 _ 2 |a Alzheimer Disease: epidemiology
|2 MeSH
650 _ 2 |a Alzheimer Disease: pathology
|2 MeSH
650 _ 2 |a Amyloid beta-Peptides: cerebrospinal fluid
|2 MeSH
650 _ 2 |a Biomarkers: cerebrospinal fluid
|2 MeSH
650 _ 2 |a Cognitive Dysfunction: cerebrospinal fluid
|2 MeSH
650 _ 2 |a Cognitive Dysfunction: pathology
|2 MeSH
650 _ 2 |a Disease Progression
|2 MeSH
650 _ 2 |a Europe: epidemiology
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Follow-Up Studies
|2 MeSH
650 _ 2 |a Hippocampus: pathology
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Kaplan-Meier Estimate
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Multicenter Studies as Topic: statistics & numerical data
|2 MeSH
650 _ 2 |a Nerve Degeneration
|2 MeSH
650 _ 2 |a Neuroimaging
|2 MeSH
650 _ 2 |a North America: epidemiology
|2 MeSH
650 _ 2 |a Organ Size
|2 MeSH
650 _ 2 |a Peptide Fragments: cerebrospinal fluid
|2 MeSH
650 _ 2 |a Phosphorylation
|2 MeSH
650 _ 2 |a Prognosis
|2 MeSH
650 _ 2 |a Proportional Hazards Models
|2 MeSH
650 _ 2 |a Protein Processing, Post-Translational
|2 MeSH
650 _ 2 |a tau Proteins: cerebrospinal fluid
|2 MeSH
650 _ 2 |a tau Proteins: chemistry
|2 MeSH
700 1 _ |a Vos, Stephanie J
|b 1
700 1 _ |a Bos, Isabelle
|b 2
700 1 _ |a Bouwman, Femke H
|b 3
700 1 _ |a Teunissen, Charlotte E
|b 4
700 1 _ |a Scheltens, Philip
|b 5
700 1 _ |a Barkhof, Frederik
|b 6
700 1 _ |a Frolich, Lutz
|b 7
700 1 _ |a Kornhuber, Johannes
|b 8
700 1 _ |a Wiltfang, Jens
|0 P:(DE-2719)2811317
|b 9
|u dzne
700 1 _ |a Maier, Wolfgang
|0 P:(DE-2719)2000015
|b 10
|u dzne
700 1 _ |a Peters, Oliver
|0 P:(DE-2719)2811024
|b 11
|u dzne
700 1 _ |a Rüther, Eckart
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Nobili, Flavio
|b 13
700 1 _ |a Frisoni, Giovanni B
|b 14
700 1 _ |a Spiru, Luiza
|b 15
700 1 _ |a Freund-Levi, Yvonne
|b 16
700 1 _ |a Wallin, Asa K
|b 17
700 1 _ |a Hampel, Harald
|b 18
700 1 _ |a Soininen, Hilkka
|b 19
700 1 _ |a Tsolaki, Magda
|b 20
700 1 _ |a Verhey, Frans
|b 21
700 1 _ |a Kłoszewska, Iwona
|b 22
700 1 _ |a Mecocci, Patrizia
|b 23
700 1 _ |a Vellas, Bruno
|b 24
700 1 _ |a Lovestone, Simon
|b 25
700 1 _ |a Galluzzi, Samantha
|b 26
700 1 _ |a Herukka, Sanna-Kaisa
|b 27
700 1 _ |a Santana, Isabel
|b 28
700 1 _ |a Baldeiras, Ines
|b 29
700 1 _ |a de Mendonça, Alexandre
|b 30
700 1 _ |a Silva, Dina
|b 31
700 1 _ |a Chetelat, Gael
|b 32
700 1 _ |a Egret, Stephanie
|b 33
700 1 _ |a Palmqvist, Sebastian
|b 34
700 1 _ |a Hansson, Oskar
|b 35
700 1 _ |a Visser, Pieter Jelle
|b 36
700 1 _ |a Berkhof, Johannes
|b 37
700 1 _ |a van der Flier, Wiesje M
|b 38
700 1 _ |a Initiative, Alzheimer's Disease Neuroimaging
|b 39
773 1 8 |a 10.1016/s1474-4422(19)30283-2
|b : Elsevier BV, 2019-11-01
|n 11
|p 1034-1044
|3 journal-article
|2 Crossref
|t The Lancet Neurology
|v 18
|y 2019
|x 1474-4422
773 _ _ |a 10.1016/S1474-4422(19)30283-2
|g Vol. 18, no. 11, p. 1034 - 1044
|0 PERI:(DE-600)2079704-7
|n 11
|q 18:11<1034 - 1044
|p 1034-1044
|t The lancet / Neurology
|v 18
|y 2019
|x 1474-4422
856 4 _ |u https://pub.dzne.de/record/141557/files/DZNE-2020-07881_Restricted.pdf
856 4 _ |u https://pub.dzne.de/record/141557/files/DZNE-2020-07881_Restricted.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:pub.dzne.de:141557
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 9
|6 P:(DE-2719)2811317
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 10
|6 P:(DE-2719)2000015
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 11
|6 P:(DE-2719)2811024
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-342
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms and Model Systems
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-344
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 1
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-09
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b LANCET NEUROL : 2021
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-09
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-09
915 _ _ |a IF >= 50
|0 StatID:(DE-HGF)9950
|2 StatID
|b LANCET NEUROL : 2021
|d 2022-11-09
920 1 _ |0 I:(DE-2719)1410006
|k AG Wiltfang
|l Molecular biomarkers for predictive diagnostics of neurodegenerative diseases
|x 0
920 1 _ |0 I:(DE-2719)7000001
|k U Clinical Researchers - Bonn
|l U Clinical Researchers - Bonn
|x 1
920 1 _ |0 I:(DE-2719)5000007
|k AG Priller
|l Translational Neuropsychiatry
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1410006
980 _ _ |a I:(DE-2719)7000001
980 _ _ |a I:(DE-2719)5000007
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21