001 | 144980 | ||
005 | 20240426115940.0 | ||
024 | 7 | _ | |a 10.1002/hbm.24933 |2 doi |
024 | 7 | _ | |a pmid:31957926 |2 pmid |
024 | 7 | _ | |a pmc:PMC7267924 |2 pmc |
024 | 7 | _ | |a 1065-9471 |2 ISSN |
024 | 7 | _ | |a 1097-0193 |2 ISSN |
024 | 7 | _ | |a altmetric:74307964 |2 altmetric |
037 | _ | _ | |a DZNE-2020-00344 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Corona, Veronica |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a A multi-contrast MRI approach to thalamus segmentation. |
260 | _ | _ | |a New York, NY |c 2020 |b Wiley-Liss |
264 | _ | 1 | |3 online |2 Crossref |b Wiley |c 2020-01-20 |
264 | _ | 1 | |3 print |2 Crossref |b Wiley |c 2020-06-01 |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1714045091_4332 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Thalamic alterations occur in many neurological disorders including Alzheimer's disease, Parkinson's disease and multiple sclerosis. Routine interventions to improve symptom severity in movement disorders, for example, often consist of surgery or deep brain stimulation to diencephalic nuclei. Therefore, accurate delineation of grey matter thalamic subregions is of the upmost clinical importance. MRI is highly appropriate for structural segmentation as it provides different views of the anatomy from a single scanning session. Though with several contrasts potentially available, it is also of increasing importance to develop new image segmentation techniques that can operate multi-spectrally. We hereby propose a new segmentation method for use with multi-modality data, which we evaluated for automated segmentation of major thalamic subnuclear groups using T1 -weighted, T 2 * -weighted and quantitative susceptibility mapping (QSM) information. The proposed method consists of four steps: Highly iterative image co-registration, manual segmentation on the average training-data template, supervised learning for pattern recognition, and a final convex optimisation step imposing further spatial constraints to refine the solution. This led to solutions in greater agreement with manual segmentation than the standard Morel atlas based approach. Furthermore, we show that the multi-contrast approach boosts segmentation performances. We then investigated whether prior knowledge using the training-template contours could further improve convex segmentation accuracy and robustness, which led to highly precise multi-contrast segmentations in single subjects. This approach can be extended to most 3D imaging data types and any region of interest discernible in single scans or multi-subject templates. |
536 | _ | _ | |a 344 - Clinical and Health Care Research (POF3-344) |0 G:(DE-HGF)POF3-344 |c POF3-344 |f POF III |x 0 |
542 | _ | _ | |i 2020-01-20 |2 Crossref |u http://creativecommons.org/licenses/by/4.0/ |
542 | _ | _ | |i 2020-01-20 |2 Crossref |u http://doi.wiley.com/10.1002/tdm_license_1.1 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
650 | _ | 2 | |a Adult |2 MeSH |
650 | _ | 2 | |a Gray Matter: anatomy & histology |2 MeSH |
650 | _ | 2 | |a Gray Matter: diagnostic imaging |2 MeSH |
650 | _ | 2 | |a Humans |2 MeSH |
650 | _ | 2 | |a Image Processing, Computer-Assisted |2 MeSH |
650 | _ | 2 | |a Magnetic Resonance Imaging: methods |2 MeSH |
650 | _ | 2 | |a Neuroimaging: methods |2 MeSH |
650 | _ | 2 | |a Pattern Recognition, Automated |2 MeSH |
650 | _ | 2 | |a Supervised Machine Learning |2 MeSH |
650 | _ | 2 | |a Thalamic Nuclei: anatomy & histology |2 MeSH |
650 | _ | 2 | |a Thalamic Nuclei: diagnostic imaging |2 MeSH |
700 | 1 | _ | |a Lellmann, Jan |b 1 |
700 | 1 | _ | |a Nestor, Peter |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Schönlieb, Carola-Bibiane |b 3 |
700 | 1 | _ | |a Acosta-Cabronero, Julio |0 P:(DE-2719)2810751 |b 4 |e Last author |u dzne |
773 | 1 | 8 | |a 10.1002/hbm.24933 |b : Wiley, 2020-01-20 |n 8 |p 2104-2120 |3 journal-article |2 Crossref |t Human Brain Mapping |v 41 |y 2020 |x 1065-9471 |
773 | _ | _ | |a 10.1002/hbm.24933 |g Vol. 41, no. 8, p. 2104 - 2120 |0 PERI:(DE-600)1492703-2 |n 8 |p 2104-2120 |t Human brain mapping |v 41 |y 2020 |x 1065-9471 |
856 | 4 | _ | |y OpenAccess |u https://pub.dzne.de/record/144980/files/DZNE-2020-00344.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://pub.dzne.de/record/144980/files/DZNE-2020-00344.pdf?subformat=pdfa |
909 | C | O | |o oai:pub.dzne.de:144980 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 4 |6 P:(DE-2719)2810751 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Erkrankungen des Nervensystems |1 G:(DE-HGF)POF3-340 |0 G:(DE-HGF)POF3-344 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-300 |4 G:(DE-HGF)POF |v Clinical and Health Care Research |x 0 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2020-02-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-09-27T20:46:01Z |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b HUM BRAIN MAPP : 2021 |d 2022-11-22 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2020-02-26 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-09-27T20:46:01Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-22 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-22 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b HUM BRAIN MAPP : 2021 |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-02-26 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2022-11-22 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-22 |
920 | 1 | _ | |0 I:(DE-2719)1310001 |k AG Nestor |l Cognitive Neurology and Neurodegeneration |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-2719)1310001 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1523/JNEUROSCI.1907-15.2016 |2 Crossref |o 10.1523/JNEUROSCI.1907-15.2016 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1111/j.1479-8301.2004.00048.x |2 Crossref |o 10.1111/j.1479-8301.2004.00048.x |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1016/j.media.2007.06.004 |2 Crossref |o 10.1016/j.media.2007.06.004 |
999 | C | 5 | |y 2009 |2 Crossref |o Avants B. B. 2009 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1038/nn1075 |2 Crossref |o 10.1038/nn1075 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.3174/ajnr.A2705 |2 Crossref |o 10.3174/ajnr.A2705 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1016/j.neuroimage.2016.05.024 |2 Crossref |o 10.1016/j.neuroimage.2016.05.024 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1137/110856733 |2 Crossref |o 10.1137/110856733 |
999 | C | 5 | |y 2016 |2 Crossref |t Conn's Translational Neuroscience |o Chien J. H. Conn's Translational Neuroscience 2016 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1016/j.neuroimage.2012.09.055 |2 Crossref |o 10.1016/j.neuroimage.2012.09.055 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1016/j.neuroimage.2006.09.016 |2 Crossref |o 10.1016/j.neuroimage.2006.09.016 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1155/2007/90216 |2 Crossref |o 10.1155/2007/90216 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1016/j.neuroimage.2018.09.061 |2 Crossref |o 10.1016/j.neuroimage.2018.09.061 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1016/0022-3956(75)90026-6 |2 Crossref |o 10.1016/0022-3956(75)90026-6 |
999 | C | 5 | |2 Crossref |o |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1002/jmri.21756 |2 Crossref |o 10.1002/jmri.21756 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1016/j.neuroimage.2018.06.007 |2 Crossref |o 10.1016/j.neuroimage.2018.06.007 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1016/j.neuroimage.2018.08.012 |2 Crossref |o 10.1016/j.neuroimage.2018.08.012 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1523/ENEURO.0060-18.2018 |2 Crossref |o 10.1523/ENEURO.0060-18.2018 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1002/mrm.1910150117 |2 Crossref |o 10.1002/mrm.1910150117 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1016/j.sigpro.2005.12.017 |2 Crossref |o 10.1016/j.sigpro.2005.12.017 |
999 | C | 5 | |y 2011 |2 Crossref |t The Human Nervous System |o Mai J. K. The Human Nervous System 2011 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1093/cercor/bhh185 |2 Crossref |o 10.1093/cercor/bhh185 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1016/j.neuroimage.2009.10.042 |2 Crossref |o 10.1016/j.neuroimage.2009.10.042 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1016/j.neuroimage.2011.11.082 |2 Crossref |o 10.1016/j.neuroimage.2011.11.082 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1137/100805844 |2 Crossref |o 10.1137/100805844 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1002/mrm.24272 |2 Crossref |o 10.1002/mrm.24272 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1002/hbm.22470 |2 Crossref |o 10.1002/hbm.22470 |
999 | C | 5 | |y 2016 |2 Crossref |t Conn's translational neuroscience |o Conn P. M. Conn's translational neuroscience 2016 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1002/(SICI)1096-9861(19971103)387:4<588::AID-CNE8>3.0.CO;2-Z |2 Crossref |o 10.1002/(SICI)1096-9861(19971103)387:4<588::AID-CNE8>3.0.CO;2-Z |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1001/archneur.58.2.218 |2 Crossref |o 10.1001/archneur.58.2.218 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1109/ICCV.2009.5459348 |2 Crossref |o 10.1109/ICCV.2009.5459348 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1177/0004867415585857 |2 Crossref |o 10.1177/0004867415585857 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1364/OL.28.001194 |2 Crossref |o 10.1364/OL.28.001194 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1016/j.neuroimage.2010.10.070 |2 Crossref |o 10.1016/j.neuroimage.2010.10.070 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1098/rstb.2002.1161 |2 Crossref |o 10.1098/rstb.2002.1161 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1152/physrev.1988.68.3.649 |2 Crossref |o 10.1152/physrev.1988.68.3.649 |
999 | C | 5 | |y 2008 |2 Crossref |t Pattern Recognition |o Theodoridis S. Pattern Recognition 2008 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1016/j.neuroimage.2013.08.069 |2 Crossref |o 10.1016/j.neuroimage.2013.08.069 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1109/TMI.2010.2046908 |2 Crossref |o 10.1109/TMI.2010.2046908 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1002/mrm.25358 |2 Crossref |o 10.1002/mrm.25358 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1016/S1474-4422(14)70117-6 |2 Crossref |o 10.1016/S1474-4422(14)70117-6 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1016/S1053-8119(03)00044-2 |2 Crossref |o 10.1016/S1053-8119(03)00044-2 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|