001     144980
005     20240426115940.0
024 7 _ |a 10.1002/hbm.24933
|2 doi
024 7 _ |a pmid:31957926
|2 pmid
024 7 _ |a pmc:PMC7267924
|2 pmc
024 7 _ |a 1065-9471
|2 ISSN
024 7 _ |a 1097-0193
|2 ISSN
024 7 _ |a altmetric:74307964
|2 altmetric
037 _ _ |a DZNE-2020-00344
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Corona, Veronica
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a A multi-contrast MRI approach to thalamus segmentation.
260 _ _ |a New York, NY
|c 2020
|b Wiley-Liss
264 _ 1 |3 online
|2 Crossref
|b Wiley
|c 2020-01-20
264 _ 1 |3 print
|2 Crossref
|b Wiley
|c 2020-06-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714045091_4332
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Thalamic alterations occur in many neurological disorders including Alzheimer's disease, Parkinson's disease and multiple sclerosis. Routine interventions to improve symptom severity in movement disorders, for example, often consist of surgery or deep brain stimulation to diencephalic nuclei. Therefore, accurate delineation of grey matter thalamic subregions is of the upmost clinical importance. MRI is highly appropriate for structural segmentation as it provides different views of the anatomy from a single scanning session. Though with several contrasts potentially available, it is also of increasing importance to develop new image segmentation techniques that can operate multi-spectrally. We hereby propose a new segmentation method for use with multi-modality data, which we evaluated for automated segmentation of major thalamic subnuclear groups using T1 -weighted, T 2 * -weighted and quantitative susceptibility mapping (QSM) information. The proposed method consists of four steps: Highly iterative image co-registration, manual segmentation on the average training-data template, supervised learning for pattern recognition, and a final convex optimisation step imposing further spatial constraints to refine the solution. This led to solutions in greater agreement with manual segmentation than the standard Morel atlas based approach. Furthermore, we show that the multi-contrast approach boosts segmentation performances. We then investigated whether prior knowledge using the training-template contours could further improve convex segmentation accuracy and robustness, which led to highly precise multi-contrast segmentations in single subjects. This approach can be extended to most 3D imaging data types and any region of interest discernible in single scans or multi-subject templates.
536 _ _ |a 344 - Clinical and Health Care Research (POF3-344)
|0 G:(DE-HGF)POF3-344
|c POF3-344
|f POF III
|x 0
542 _ _ |i 2020-01-20
|2 Crossref
|u http://creativecommons.org/licenses/by/4.0/
542 _ _ |i 2020-01-20
|2 Crossref
|u http://doi.wiley.com/10.1002/tdm_license_1.1
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a Gray Matter: anatomy & histology
|2 MeSH
650 _ 2 |a Gray Matter: diagnostic imaging
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Image Processing, Computer-Assisted
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging: methods
|2 MeSH
650 _ 2 |a Neuroimaging: methods
|2 MeSH
650 _ 2 |a Pattern Recognition, Automated
|2 MeSH
650 _ 2 |a Supervised Machine Learning
|2 MeSH
650 _ 2 |a Thalamic Nuclei: anatomy & histology
|2 MeSH
650 _ 2 |a Thalamic Nuclei: diagnostic imaging
|2 MeSH
700 1 _ |a Lellmann, Jan
|b 1
700 1 _ |a Nestor, Peter
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schönlieb, Carola-Bibiane
|b 3
700 1 _ |a Acosta-Cabronero, Julio
|0 P:(DE-2719)2810751
|b 4
|e Last author
|u dzne
773 1 8 |a 10.1002/hbm.24933
|b : Wiley, 2020-01-20
|n 8
|p 2104-2120
|3 journal-article
|2 Crossref
|t Human Brain Mapping
|v 41
|y 2020
|x 1065-9471
773 _ _ |a 10.1002/hbm.24933
|g Vol. 41, no. 8, p. 2104 - 2120
|0 PERI:(DE-600)1492703-2
|n 8
|p 2104-2120
|t Human brain mapping
|v 41
|y 2020
|x 1065-9471
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/144980/files/DZNE-2020-00344.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/144980/files/DZNE-2020-00344.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:144980
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2810751
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-344
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-27T20:46:01Z
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b HUM BRAIN MAPP : 2021
|d 2022-11-22
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-02-26
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-27T20:46:01Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b HUM BRAIN MAPP : 2021
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-26
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-22
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-22
920 1 _ |0 I:(DE-2719)1310001
|k AG Nestor
|l Cognitive Neurology and Neurodegeneration
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1310001
980 1 _ |a FullTexts
999 C 5 |9 -- missing cx lookup --
|a 10.1523/JNEUROSCI.1907-15.2016
|2 Crossref
|o 10.1523/JNEUROSCI.1907-15.2016
999 C 5 |9 -- missing cx lookup --
|a 10.1111/j.1479-8301.2004.00048.x
|2 Crossref
|o 10.1111/j.1479-8301.2004.00048.x
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.media.2007.06.004
|2 Crossref
|o 10.1016/j.media.2007.06.004
999 C 5 |y 2009
|2 Crossref
|o Avants B. B. 2009
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nn1075
|2 Crossref
|o 10.1038/nn1075
999 C 5 |9 -- missing cx lookup --
|a 10.3174/ajnr.A2705
|2 Crossref
|o 10.3174/ajnr.A2705
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2016.05.024
|2 Crossref
|o 10.1016/j.neuroimage.2016.05.024
999 C 5 |9 -- missing cx lookup --
|a 10.1137/110856733
|2 Crossref
|o 10.1137/110856733
999 C 5 |y 2016
|2 Crossref
|t Conn's Translational Neuroscience
|o Chien J. H. Conn's Translational Neuroscience 2016
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2012.09.055
|2 Crossref
|o 10.1016/j.neuroimage.2012.09.055
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2006.09.016
|2 Crossref
|o 10.1016/j.neuroimage.2006.09.016
999 C 5 |9 -- missing cx lookup --
|a 10.1155/2007/90216
|2 Crossref
|o 10.1155/2007/90216
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2018.09.061
|2 Crossref
|o 10.1016/j.neuroimage.2018.09.061
999 C 5 |9 -- missing cx lookup --
|a 10.1016/0022-3956(75)90026-6
|2 Crossref
|o 10.1016/0022-3956(75)90026-6
999 C 5 |2 Crossref
|o
999 C 5 |9 -- missing cx lookup --
|a 10.1002/jmri.21756
|2 Crossref
|o 10.1002/jmri.21756
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2018.06.007
|2 Crossref
|o 10.1016/j.neuroimage.2018.06.007
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2018.08.012
|2 Crossref
|o 10.1016/j.neuroimage.2018.08.012
999 C 5 |9 -- missing cx lookup --
|a 10.1523/ENEURO.0060-18.2018
|2 Crossref
|o 10.1523/ENEURO.0060-18.2018
999 C 5 |9 -- missing cx lookup --
|a 10.1002/mrm.1910150117
|2 Crossref
|o 10.1002/mrm.1910150117
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.sigpro.2005.12.017
|2 Crossref
|o 10.1016/j.sigpro.2005.12.017
999 C 5 |y 2011
|2 Crossref
|t The Human Nervous System
|o Mai J. K. The Human Nervous System 2011
999 C 5 |9 -- missing cx lookup --
|a 10.1093/cercor/bhh185
|2 Crossref
|o 10.1093/cercor/bhh185
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2009.10.042
|2 Crossref
|o 10.1016/j.neuroimage.2009.10.042
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2011.11.082
|2 Crossref
|o 10.1016/j.neuroimage.2011.11.082
999 C 5 |9 -- missing cx lookup --
|a 10.1137/100805844
|2 Crossref
|o 10.1137/100805844
999 C 5 |9 -- missing cx lookup --
|a 10.1002/mrm.24272
|2 Crossref
|o 10.1002/mrm.24272
999 C 5 |9 -- missing cx lookup --
|a 10.1002/hbm.22470
|2 Crossref
|o 10.1002/hbm.22470
999 C 5 |y 2016
|2 Crossref
|t Conn's translational neuroscience
|o Conn P. M. Conn's translational neuroscience 2016
999 C 5 |9 -- missing cx lookup --
|a 10.1002/(SICI)1096-9861(19971103)387:4<588::AID-CNE8>3.0.CO;2-Z
|2 Crossref
|o 10.1002/(SICI)1096-9861(19971103)387:4<588::AID-CNE8>3.0.CO;2-Z
999 C 5 |9 -- missing cx lookup --
|a 10.1001/archneur.58.2.218
|2 Crossref
|o 10.1001/archneur.58.2.218
999 C 5 |9 -- missing cx lookup --
|a 10.1109/ICCV.2009.5459348
|2 Crossref
|o 10.1109/ICCV.2009.5459348
999 C 5 |9 -- missing cx lookup --
|a 10.1177/0004867415585857
|2 Crossref
|o 10.1177/0004867415585857
999 C 5 |9 -- missing cx lookup --
|a 10.1364/OL.28.001194
|2 Crossref
|o 10.1364/OL.28.001194
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2010.10.070
|2 Crossref
|o 10.1016/j.neuroimage.2010.10.070
999 C 5 |9 -- missing cx lookup --
|a 10.1098/rstb.2002.1161
|2 Crossref
|o 10.1098/rstb.2002.1161
999 C 5 |9 -- missing cx lookup --
|a 10.1152/physrev.1988.68.3.649
|2 Crossref
|o 10.1152/physrev.1988.68.3.649
999 C 5 |y 2008
|2 Crossref
|t Pattern Recognition
|o Theodoridis S. Pattern Recognition 2008
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.neuroimage.2013.08.069
|2 Crossref
|o 10.1016/j.neuroimage.2013.08.069
999 C 5 |9 -- missing cx lookup --
|a 10.1109/TMI.2010.2046908
|2 Crossref
|o 10.1109/TMI.2010.2046908
999 C 5 |9 -- missing cx lookup --
|a 10.1002/mrm.25358
|2 Crossref
|o 10.1002/mrm.25358
999 C 5 |9 -- missing cx lookup --
|a 10.1016/S1474-4422(14)70117-6
|2 Crossref
|o 10.1016/S1474-4422(14)70117-6
999 C 5 |9 -- missing cx lookup --
|a 10.1016/S1053-8119(03)00044-2
|2 Crossref
|o 10.1016/S1053-8119(03)00044-2


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21