Home > Publications Database > Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks. > print |
001 | 145037 | ||
005 | 20240423115938.0 | ||
024 | 7 | _ | |a 10.1038/s41467-019-14018-z |2 doi |
024 | 7 | _ | |a pmid:31919373 |2 pmid |
024 | 7 | _ | |a pmc:PMC6952370 |2 pmc |
024 | 7 | _ | |a altmetric:73787594 |2 altmetric |
037 | _ | _ | |a DZNE-2020-00397 |
041 | _ | _ | |a English |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Marouf, Mohamed |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks. |
260 | _ | _ | |a [London] |c 2020 |b Nature Publishing Group UK |
264 | _ | 1 | |3 online |2 Crossref |b Springer Science and Business Media LLC |c 2020-01-09 |
264 | _ | 1 | |3 print |2 Crossref |b Springer Science and Business Media LLC |c 2020-12-01 |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1713795813_6654 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a A fundamental problem in biomedical research is the low number of observations available, mostly due to a lack of available biosamples, prohibitive costs, or ethical reasons. Augmenting few real observations with generated in silico samples could lead to more robust analysis results and a higher reproducibility rate. Here, we propose the use of conditional single-cell generative adversarial neural networks (cscGAN) for the realistic generation of single-cell RNA-seq data. cscGAN learns non-linear gene-gene dependencies from complex, multiple cell type samples and uses this information to generate realistic cells of defined types. Augmenting sparse cell populations with cscGAN generated cells improves downstream analyses such as the detection of marker genes, the robustness and reliability of classifiers, the assessment of novel analysis algorithms, and might reduce the number of animal experiments and costs in consequence. cscGAN outperforms existing methods for single-cell RNA-seq data generation in quality and hold great promise for the realistic generation and augmentation of other biomedical data types. |
536 | _ | _ | |a 342 - Disease Mechanisms and Model Systems (POF3-342) |0 G:(DE-HGF)POF3-342 |c POF3-342 |f POF III |x 0 |
542 | _ | _ | |i 2020-01-09 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
650 | _ | 7 | |a RNA |0 63231-63-0 |2 NLM Chemicals |
650 | _ | 2 | |a Algorithms |2 MeSH |
650 | _ | 2 | |a Animals |2 MeSH |
650 | _ | 2 | |a Biomedical Research: methods |2 MeSH |
650 | _ | 2 | |a Computer Simulation |2 MeSH |
650 | _ | 2 | |a Humans |2 MeSH |
650 | _ | 2 | |a Mice |2 MeSH |
650 | _ | 2 | |a Models, Theoretical |2 MeSH |
650 | _ | 2 | |a Neural Networks, Computer |2 MeSH |
650 | _ | 2 | |a RNA: genetics |2 MeSH |
650 | _ | 2 | |a RNA-Seq: methods |2 MeSH |
700 | 1 | _ | |a Machart, Pierre |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Bansal, Vikas |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Kilian, Christoph |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Magruder, Daniel S. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Krebs, Christian F. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Bonn, Stefan |0 P:(DE-2719)2810547 |b 6 |e Last author |u dzne |
773 | 1 | 8 | |a 10.1038/s41467-019-14018-z |b : Springer Science and Business Media LLC, 2020-01-09 |n 1 |p 166 |3 journal-article |2 Crossref |t Nature Communications |v 11 |y 2020 |x 2041-1723 |
773 | _ | _ | |a 10.1038/s41467-019-14018-z |g Vol. 11, no. 1, p. 166 |0 PERI:(DE-600)2553671-0 |n 1 |p 166 |t Nature Communications |v 11 |y 2020 |x 2041-1723 |
856 | 4 | _ | |y OpenAccess |u https://pub.dzne.de/record/145037/files/DZNE-2020-00397.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://pub.dzne.de/record/145037/files/DZNE-2020-00397.pdf?subformat=pdfa |
909 | C | O | |o oai:pub.dzne.de:145037 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 6 |6 P:(DE-2719)2810547 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Erkrankungen des Nervensystems |1 G:(DE-HGF)POF3-340 |0 G:(DE-HGF)POF3-342 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-300 |4 G:(DE-HGF)POF |v Disease Mechanisms and Model Systems |x 0 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-11 |
915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2020-01-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2020-01-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2022-11-11 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NAT COMMUN : 2021 |d 2022-11-11 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2021 |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-10-13T14:44:21Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-10-13T14:44:21Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-11 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2021-10-13T14:44:21Z |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |f 2020-01-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-11 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2020-01-16 |
920 | 1 | _ | |0 I:(DE-2719)1410003 |k AG Bonn 1 |l Computational analysis of biological networks |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-2719)1410003 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |2 Crossref |o |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1038/nrg.2018.4 |2 Crossref |o 10.1038/nrg.2018.4 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1038/nrn3475 |2 Crossref |o 10.1038/nrn3475 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1109/CVPR.2017.632 |2 Crossref |o 10.1109/CVPR.2017.632 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1109/MSP.2017.2765202 |2 Crossref |o 10.1109/MSP.2017.2765202 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1038/nature21350 |2 Crossref |o 10.1038/nature21350 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1038/ncomms14049 |2 Crossref |o 10.1038/ncomms14049 |
999 | C | 5 | |y 2008 |2 Crossref |o L Maaten van der 2008 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1038/nature09645 |2 Crossref |o 10.1038/nature09645 |
999 | C | 5 | |y 2017 |2 Crossref |o S Aibar 2017 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1126/science.aaa1934 |2 Crossref |o 10.1126/science.aaa1934 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1023/A:1010933404324 |2 Crossref |o 10.1023/A:1010933404324 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1186/s13059-017-1305-0 |2 Crossref |o 10.1186/s13059-017-1305-0 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1016/j.cell.2018.05.061 |2 Crossref |o 10.1016/j.cell.2018.05.061 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1186/s13059-019-1663-x |2 Crossref |o 10.1186/s13059-019-1663-x |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1016/j.cell.2015.11.013 |2 Crossref |o 10.1016/j.cell.2015.11.013 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1103/PhysRevE.92.032801 |2 Crossref |o 10.1103/PhysRevE.92.032801 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1186/s13059-017-1382-0 |2 Crossref |o 10.1186/s13059-017-1382-0 |
999 | C | 5 | |y 2011 |2 Crossref |o F Pedregosa 2011 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1186/s13059-015-0805-z |2 Crossref |o 10.1186/s13059-015-0805-z |
999 | C | 5 | |y 2012 |2 Crossref |o A Gretton 2012 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1093/bioinformatics/btx196 |2 Crossref |o 10.1093/bioinformatics/btx196 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1101/gr.110882.110 |2 Crossref |o 10.1101/gr.110882.110 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1371/journal.pone.0098679 |2 Crossref |o 10.1371/journal.pone.0098679 |
999 | C | 5 | |9 -- missing cx lookup -- |a 10.1038/nmeth.3971 |2 Crossref |o 10.1038/nmeth.3971 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|