001     145037
005     20240423115938.0
024 7 _ |a 10.1038/s41467-019-14018-z
|2 doi
024 7 _ |a pmid:31919373
|2 pmid
024 7 _ |a pmc:PMC6952370
|2 pmc
024 7 _ |a altmetric:73787594
|2 altmetric
037 _ _ |a DZNE-2020-00397
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Marouf, Mohamed
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks.
260 _ _ |a [London]
|c 2020
|b Nature Publishing Group UK
264 _ 1 |3 online
|2 Crossref
|b Springer Science and Business Media LLC
|c 2020-01-09
264 _ 1 |3 print
|2 Crossref
|b Springer Science and Business Media LLC
|c 2020-12-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1713795813_6654
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A fundamental problem in biomedical research is the low number of observations available, mostly due to a lack of available biosamples, prohibitive costs, or ethical reasons. Augmenting few real observations with generated in silico samples could lead to more robust analysis results and a higher reproducibility rate. Here, we propose the use of conditional single-cell generative adversarial neural networks (cscGAN) for the realistic generation of single-cell RNA-seq data. cscGAN learns non-linear gene-gene dependencies from complex, multiple cell type samples and uses this information to generate realistic cells of defined types. Augmenting sparse cell populations with cscGAN generated cells improves downstream analyses such as the detection of marker genes, the robustness and reliability of classifiers, the assessment of novel analysis algorithms, and might reduce the number of animal experiments and costs in consequence. cscGAN outperforms existing methods for single-cell RNA-seq data generation in quality and hold great promise for the realistic generation and augmentation of other biomedical data types.
536 _ _ |a 342 - Disease Mechanisms and Model Systems (POF3-342)
|0 G:(DE-HGF)POF3-342
|c POF3-342
|f POF III
|x 0
542 _ _ |i 2020-01-09
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a RNA
|0 63231-63-0
|2 NLM Chemicals
650 _ 2 |a Algorithms
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Biomedical Research: methods
|2 MeSH
650 _ 2 |a Computer Simulation
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Models, Theoretical
|2 MeSH
650 _ 2 |a Neural Networks, Computer
|2 MeSH
650 _ 2 |a RNA: genetics
|2 MeSH
650 _ 2 |a RNA-Seq: methods
|2 MeSH
700 1 _ |a Machart, Pierre
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bansal, Vikas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kilian, Christoph
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Magruder, Daniel S.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Krebs, Christian F.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Bonn, Stefan
|0 P:(DE-2719)2810547
|b 6
|e Last author
|u dzne
773 1 8 |a 10.1038/s41467-019-14018-z
|b : Springer Science and Business Media LLC, 2020-01-09
|n 1
|p 166
|3 journal-article
|2 Crossref
|t Nature Communications
|v 11
|y 2020
|x 2041-1723
773 _ _ |a 10.1038/s41467-019-14018-z
|g Vol. 11, no. 1, p. 166
|0 PERI:(DE-600)2553671-0
|n 1
|p 166
|t Nature Communications
|v 11
|y 2020
|x 2041-1723
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/145037/files/DZNE-2020-00397.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/145037/files/DZNE-2020-00397.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:145037
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2810547
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-342
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms and Model Systems
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-11
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2022-11-11
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2021
|d 2022-11-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2021
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-10-13T14:44:21Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-10-13T14:44:21Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-11
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2021-10-13T14:44:21Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-11
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-01-16
920 1 _ |0 I:(DE-2719)1410003
|k AG Bonn 1
|l Computational analysis of biological networks
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1410003
980 1 _ |a FullTexts
999 C 5 |2 Crossref
|o
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nrg.2018.4
|2 Crossref
|o 10.1038/nrg.2018.4
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nrn3475
|2 Crossref
|o 10.1038/nrn3475
999 C 5 |9 -- missing cx lookup --
|a 10.1109/CVPR.2017.632
|2 Crossref
|o 10.1109/CVPR.2017.632
999 C 5 |9 -- missing cx lookup --
|a 10.1109/MSP.2017.2765202
|2 Crossref
|o 10.1109/MSP.2017.2765202
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nature21350
|2 Crossref
|o 10.1038/nature21350
999 C 5 |9 -- missing cx lookup --
|a 10.1038/ncomms14049
|2 Crossref
|o 10.1038/ncomms14049
999 C 5 |y 2008
|2 Crossref
|o L Maaten van der 2008
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nature09645
|2 Crossref
|o 10.1038/nature09645
999 C 5 |y 2017
|2 Crossref
|o S Aibar 2017
999 C 5 |9 -- missing cx lookup --
|a 10.1126/science.aaa1934
|2 Crossref
|o 10.1126/science.aaa1934
999 C 5 |9 -- missing cx lookup --
|a 10.1023/A:1010933404324
|2 Crossref
|o 10.1023/A:1010933404324
999 C 5 |9 -- missing cx lookup --
|a 10.1186/s13059-017-1305-0
|2 Crossref
|o 10.1186/s13059-017-1305-0
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.cell.2018.05.061
|2 Crossref
|o 10.1016/j.cell.2018.05.061
999 C 5 |9 -- missing cx lookup --
|a 10.1186/s13059-019-1663-x
|2 Crossref
|o 10.1186/s13059-019-1663-x
999 C 5 |9 -- missing cx lookup --
|a 10.1016/j.cell.2015.11.013
|2 Crossref
|o 10.1016/j.cell.2015.11.013
999 C 5 |9 -- missing cx lookup --
|a 10.1103/PhysRevE.92.032801
|2 Crossref
|o 10.1103/PhysRevE.92.032801
999 C 5 |9 -- missing cx lookup --
|a 10.1186/s13059-017-1382-0
|2 Crossref
|o 10.1186/s13059-017-1382-0
999 C 5 |y 2011
|2 Crossref
|o F Pedregosa 2011
999 C 5 |9 -- missing cx lookup --
|a 10.1186/s13059-015-0805-z
|2 Crossref
|o 10.1186/s13059-015-0805-z
999 C 5 |y 2012
|2 Crossref
|o A Gretton 2012
999 C 5 |9 -- missing cx lookup --
|a 10.1093/bioinformatics/btx196
|2 Crossref
|o 10.1093/bioinformatics/btx196
999 C 5 |9 -- missing cx lookup --
|a 10.1101/gr.110882.110
|2 Crossref
|o 10.1101/gr.110882.110
999 C 5 |9 -- missing cx lookup --
|a 10.1371/journal.pone.0098679
|2 Crossref
|o 10.1371/journal.pone.0098679
999 C 5 |9 -- missing cx lookup --
|a 10.1038/nmeth.3971
|2 Crossref
|o 10.1038/nmeth.3971


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21