001     145050
005     20240321221024.0
024 7 _ |a 0006-3002
|2 ISSN
024 7 _ |a 10.1016/j.bbagrm.2019.194418
|2 doi
024 7 _ |a pmid:31639475
|2 pmid
024 7 _ |a pmc:PMC7166149
|2 pmc
024 7 _ |a 1874-9399
|2 ISSN
024 7 _ |a 1876-4320
|2 ISSN
024 7 _ |a altmetric:105896112
|2 altmetric
037 _ _ |a DZNE-2020-00410
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Altenbuchinger, Michael
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Gaussian and Mixed Graphical Models as (multi-)omics data analysis tools.
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier
264 _ 1 |3 print
|2 Crossref
|b Elsevier BV
|c 2020-06-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1708960145_5081
|2 PUB:(DE-HGF)
|x Review Article
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Gaussian Graphical Models (GGMs) are tools to infer dependencies between biological variables. Popular applications are the reconstruction of gene, protein, and metabolite association networks. GGMs are an exploratory research tool that can be useful to discover interesting relations between genes (functional clusters) or to identify therapeutically interesting genes, but do not necessarily infer a network in the mechanistic sense. Although GGMs are well investigated from a theoretical and applied perspective, important extensions are not well known within the biological community. GGMs assume, for instance, multivariate normal distributed data. If this assumption is violated Mixed Graphical Models (MGMs) can be the better choice. In this review, we provide the theoretical foundations of GGMs, present extensions such as MGMs or multi-class GGMs, and illustrate how those methods can provide insight in biological mechanisms. We summarize several applications and present user-friendly estimation software. This article is part of a Special Issue entitled: Transcriptional Profiles and Regulatory Gene Networks edited by Dr. Dr. Federico Manuel Giorgi and Dr. Shaun Mahony.
536 _ _ |a 344 - Clinical and Health Care Research (POF3-344)
|0 G:(DE-HGF)POF3-344
|c POF3-344
|f POF III
|x 0
542 _ _ |i 2020-06-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 2 |a Gene Regulatory Networks
|2 MeSH
650 _ 2 |a Genomics
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Metabolomics
|2 MeSH
650 _ 2 |a Models, Genetic
|2 MeSH
650 _ 2 |a Models, Statistical
|2 MeSH
650 _ 2 |a Normal Distribution
|2 MeSH
650 _ 2 |a Software
|2 MeSH
700 1 _ |a Weihs, Antoine
|b 1
700 1 _ |a Quackenbush, John
|b 2
700 1 _ |a Grabe, Hans Jörgen
|0 P:(DE-2719)2811781
|b 3
|u dzne
700 1 _ |a Zacharias, Helena U
|b 4
773 1 8 |a 10.1016/j.bbagrm.2019.194418
|b : Elsevier BV, 2020-06-01
|n 6
|p 194418
|3 journal-article
|2 Crossref
|t Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
|v 1863
|y 2020
|x 1874-9399
773 _ _ |a 10.1016/j.bbagrm.2019.194418
|g Vol. 1863, no. 6, p. 194418 -
|0 PERI:(DE-600)2406725-8
|n 6
|p 194418
|t Biochimica et biophysica acta / Gene regulatory mechanisms
|v 1863
|y 2020
|x 1874-9399
856 4 _ |u https://pub.dzne.de/record/145050/files/DZNE-2020-00410_Restricted.pdf
856 4 _ |u https://pub.dzne.de/record/145050/files/DZNE-2020-00410_Restricted.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:pub.dzne.de:145050
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2811781
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-344
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BBA-GENE REGUL MECH : 2021
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-22
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b BBA-GENE REGUL MECH : 2021
|d 2022-11-22
920 1 _ |0 I:(DE-2719)6000017
|k Rostock / Greifswald common
|l Rostock / Greifswald common
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)6000017
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21