000145342 001__ 145342
000145342 005__ 20230915101331.0
000145342 037__ $$aDZNE-2020-00698
000145342 041__ $$aEnglish
000145342 082__ $$a610
000145342 1001_ $$0P:(DE-2719)2813057$$aChamoun, Miriam$$b0$$eFirst author$$udzne
000145342 1112_ $$aGLIA Edinburgh 2017$$cEdinburgh$$d2017-07-08 - 2017-07-11$$wScotland
000145342 245__ $$aMicroglia synapse interaction precedes synapse elimination in mouse models of AD
000145342 260__ $$c2017
000145342 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1596109063_11286
000145342 3367_ $$033$$2EndNote$$aConference Paper
000145342 3367_ $$2BibTeX$$aINPROCEEDINGS
000145342 3367_ $$2DRIVER$$aconferenceObject
000145342 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$mjournal
000145342 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000145342 3367_ $$2ORCID$$aOTHER
000145342 520__ $$aMicroglia are actively surveying the brain parenchyma by protracting and retracting their fine processes. They physically interact with neurons and their synapses and have been shown to influence the morphology of dendritic spines dependent on the contact rate under normal physiological conditions. Under neurodegenerative disease conditions like Alzheimer¶s disease (AD), microglia mediate early synapse loss via the complement system or neuron loss dependent on the fractalkine receptor (CX3CR1). It remains unresolved whether microglia contribute to synapse loss during late disease stages, whether that changes contact rates or involves neuron microglia communication via the CX3CR1 receptor. To address these open questions, we carried out time-lapse two-photon in vivo imaging in the hippocampus and cortex of two different mouse models of AD, the APP/PS1 and the 3xTg-AD model. We analyzed dendritic spine loss in relation to microglia contact rates of dendritic spines and with respect to CX3CR1-deficiency under advanced AD-like conditions. We found increased turnover and loss of dendritic spines under AD-like conditions. Furthermore, spine loss in proximity to Aȕ-plaques was ameliorated in CX3CR1-deficient APP/PS1 mice. Surprisingly, the microglia contact rates of dendritic spines before elimination were significantly reduced dependent on CX3CR1-deficiency. Reduced microglia contact rates dependent on CX3CR1-deficiency were consistently found in APP/PS1 and 3xTg-AD mice similarly in the cortex and hippocampus. These data indicate that microglia mediate synapse loss via elevated physical synapse interactions dependent on the CX3CR1 receptor under advanced AD-like conditions.
000145342 536__ $$0G:(DE-HGF)POF3-342$$a342 - Disease Mechanisms and Model Systems (POF3-342)$$cPOF3-342$$fPOF III$$x0
000145342 536__ $$0G:(DE-HGF)POF3-344$$a344 - Clinical and Health Care Research (POF3-344)$$cPOF3-344$$fPOF III$$x1
000145342 7001_ $$0P:(DE-2719)2811414$$aNebeling, Felix$$b1$$udzne
000145342 7001_ $$0P:(DE-HGF)0$$aSchneider, J$$b2
000145342 7001_ $$0P:(DE-2719)2810279$$aSteffen, Julia$$b3$$udzne
000145342 7001_ $$0P:(DE-2719)2810398$$aGu, Ligang$$b4$$udzne
000145342 7001_ $$0P:(DE-2719)2679991$$aFuhrmann, Martin$$b5$$eLast author$$udzne
000145342 773__ $$0PERI:(DE-600)1474828-9$$nS1$$pE290$$tGlia$$v65$$x0894-1491$$y2017
000145342 8564_ $$uhttps://onlinelibrary.wiley.com/doi/epdf/10.1002/glia.23157
000145342 909CO $$ooai:pub.dzne.de:145342$$pVDB
000145342 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2813057$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000145342 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811414$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000145342 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810279$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000145342 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810398$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b4$$kDZNE
000145342 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2679991$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b5$$kDZNE
000145342 9131_ $$0G:(DE-HGF)POF3-342$$1G:(DE-HGF)POF3-340$$2G:(DE-HGF)POF3-300$$aDE-HGF$$bForschungsbereich Gesundheit$$lErkrankungen des Nervensystems$$vDisease Mechanisms and Model Systems$$x0
000145342 9131_ $$0G:(DE-HGF)POF3-344$$1G:(DE-HGF)POF3-340$$2G:(DE-HGF)POF3-300$$aDE-HGF$$bForschungsbereich Gesundheit$$lErkrankungen des Nervensystems$$vClinical and Health Care Research$$x1
000145342 9141_ $$y2017
000145342 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000145342 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000145342 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-02-26
000145342 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-08$$wger
000145342 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-08
000145342 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-08
000145342 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-08
000145342 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-08
000145342 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-08
000145342 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-08
000145342 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGLIA : 2021$$d2022-11-08
000145342 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bGLIA : 2021$$d2022-11-08
000145342 9201_ $$0I:(DE-2719)1011004$$kAG Fuhrmann$$lNeuroimmunology and Imaging$$x0
000145342 9201_ $$0I:(DE-2719)1310003$$kAG Müller$$lNeuroprotection$$x1
000145342 980__ $$aabstract
000145342 980__ $$aVDB
000145342 980__ $$ajournal
000145342 980__ $$aI:(DE-2719)1011004
000145342 980__ $$aI:(DE-2719)1310003
000145342 980__ $$aUNRESTRICTED