001     145425
005     20200925192301.0
037 _ _ |a DZNE-2020-00768
082 _ _ |a 570
100 1 _ |a Müller-Rischart, Anne Kathrin
|0 P:(DE-2719)9000425
|b 0
|e First author
|u dzne
111 2 _ |a 16th European Bioenergetics Conference
|d 2010-07-17 - 2010-07-22
245 _ _ |a Parkinson's disease-associated genes and mitochondrial integrity
260 _ _ |c 2010
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1596536577_3263
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|m journal
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a Parkinson's disease (PD) is the most common movement disorder and the second most common neurodegenerative disease after Alzheimer's disease, affecting an increasing number of patients due to the demographic trend towards an aged population. Oxidative stress, mitochondrial dysfunction and protein aggregation are pathophysiological alterations consistently found in the course of the disease, however, the etiology of sporadic PD still remains enigmatic. Thus, the identification of genes which are reponsible for familial variants was a major breakthrough. Importantly, several PD-linked gene products have a direct or indirect impact on mitochondrial integrity, emphasizing a crucial role of mitochondria in the pathogenesis of PD. Loss-of-function mutations in the E3 ubiquitin ligase parkin or the mitochondrial kinase PINK1 are associated with autosomal recessive parkinsonism. Our previous work revealed that parkin is a stress-responsive protein with a remarkably wide neuroprotective capacity, preventing cell death under various stress conditions. An early consequence of parkin or PINK1 silencing in human cells is a decrease in mitochondrial membrane potential and ATP production and increase in mitochondrial fragmentation. Remarkably, parkin can increase the clearance of dysfunctional mitochondria by mitophagy in a PINK1-dependent manner. We will discuss the underlying mechanisms and present data indicative of a regulatory crosstalk between the autophagic machinery and mitochondrial dynamics.
536 _ _ |a 341 - Molecular Signaling (POF3-341)
|0 G:(DE-HGF)POF3-341
|c POF3-341
|f POF III
|x 0
536 _ _ |a 342 - Disease Mechanisms and Model Systems (POF3-342)
|0 G:(DE-HGF)POF3-342
|c POF3-342
|f POF III
|x 1
700 1 _ |a Pilsl, Anna
|0 P:(DE-2719)9000909
|b 1
|u dzne
700 1 _ |a Bouman, Lena
|0 P:(DE-2719)9000417
|b 2
|u dzne
700 1 _ |a Tatzelt, Jörg
|0 P:(DE-2719)9000396
|b 3
|u dzne
700 1 _ |a Winklhofer, Konstanze F
|0 P:(DE-2719)9000369
|b 4
|e Last author
|u dzne
773 _ _ |0 PERI:(DE-600)2209370-9
|p 75
|t Biochimica et biophysica acta / Bioenergetics
|v 1797
|y 2010
|x 0005-2728
856 4 _ |u https://reader.elsevier.com/reader/sd/pii/S0005272810003622?token=B6AB96EA61C62206B6A38A3D30E66114A9B69DC87CF966E7402564FDAFEEE1B494CACA2D54CAFE924BA6ACBD3D9D4E0B
909 C O |o oai:pub.dzne.de:145425
|p VDB
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9000425
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)9000909
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9000417
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)9000396
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)9000369
913 1 _ |a DE-HGF
|b Forschungsbereich Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-341
|2 G:(DE-HGF)POF3-300
|v Molecular Signaling
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-342
|2 G:(DE-HGF)POF3-300
|v Disease Mechanisms and Model Systems
|x 1
914 1 _ |y 2010
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-02-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-02-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BBA-BIOENERGETICS : 2018
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-02-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-02-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-02-27
920 1 _ |0 I:(DE-2719)5000047
|k AG Winklhofer
|l Neurobiochemistry
|x 0
920 1 _ |0 I:(DE-2719)6000016
|k München Pre 2020
|l München Pre 2020
|x 1
920 1 _ |0 I:(DE-2719)5000053
|k Ext AG Tatzelt
|l Ext Neurobiochemistry, LMU
|x 2
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a journal
980 _ _ |a I:(DE-2719)5000047
980 _ _ |a I:(DE-2719)6000016
980 _ _ |a I:(DE-2719)5000053
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21