001     145540
005     20250522150104.0
020 _ _ |a 978-3-030-00128-5 (print)
020 _ _ |a 978-3-030-00129-2 (electronic)
024 7 _ |a 10.1007/978-3-030-00129-2_4
|2 doi
024 7 _ |a 0302-9743
|2 ISSN
024 7 _ |a 1611-3349
|2 ISSN
037 _ _ |a DZNE-2020-00874
041 _ _ |a English
100 1 _ |a Dedmari, Muneer Ahmad
|0 P:(DE-2719)2812572
|b 0
|u dzne
111 2 _ |a Machine Learning for Medical Image Reconstruction
|g MLMIR 2018
|c Granada
|d 2018-09-16 - 2018-09-16
|w Spain
245 _ _ |a Complex Fully Convolutional Neural Networks for MR Image Reconstruction
260 _ _ |c 2018
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Book
|0 PUB:(DE-HGF)3
|2 PUB:(DE-HGF)
|m book
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1747918810_22615
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a Undersampling the k-space data is widely adopted for acceleration of Magnetic Resonance Imaging (MRI). Current deep learning based approaches for supervised learning of MRI image reconstruction employ real-valued operations and representations by treating complex valued k-space/spatial-space as real values. In this paper, we propose complex dense fully convolutional neural network (CDFNet) for learning to de-alias the reconstruction artifacts within undersampled MRI images. We fashioned a densely-connected fully convolutional block tailored for complex-valued inputs by introducing dedicated layers such as complex convolution, batch normalization, non-linearities etc. CDFNet leverages the inherently complex-valued nature of input k-space and learns richer representations. We demonstrate improved perceptual quality and recovery of anatomical structures through CDFNet in contrast to its real-valued counterparts.
536 _ _ |a 345 - Population Studies and Genetics (POF3-345)
|0 G:(DE-HGF)POF3-345
|c POF3-345
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef Book Series, Journals: pub.dzne.de
700 1 _ |a Conjeti, Sailesh
|0 P:(DE-2719)2812477
|b 1
|u dzne
700 1 _ |a Estrada Leon, Edgar Santiago
|0 P:(DE-2719)2812449
|b 2
|u dzne
700 1 _ |a Ehses, Philipp
|0 P:(DE-2719)2812222
|b 3
|u dzne
700 1 _ |a Stöcker, Tony
|0 P:(DE-2719)2810538
|b 4
|u dzne
700 1 _ |a Reuter, Martin
|0 P:(DE-2719)2812134
|b 5
|u dzne
773 _ _ |a 10.1007/978-3-030-00129-2_4
856 4 _ |u https://link.springer.com/chapter/10.1007/978-3-030-00129-2_4
909 C O |p VDB
|o oai:pub.dzne.de:145540
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2812572
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2812477
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2812449
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2812222
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2810538
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2812134
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-345
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Population Studies and Genetics
|x 0
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
920 1 _ |0 I:(DE-2719)1040310
|k AG Reuter
|l Artificial Intelligence in Medicine
|x 0
920 1 _ |0 I:(DE-2719)1012001
|k AG Breteler
|l Population Health Sciences
|x 1
920 1 _ |0 I:(DE-2719)1013026
|k AG Stöcker
|l MR Physics
|x 2
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a book
980 _ _ |a I:(DE-2719)1040310
980 _ _ |a I:(DE-2719)1012001
980 _ _ |a I:(DE-2719)1013026
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21