001     145574
005     20200925192509.0
037 _ _ |a DZNE-2020-00907
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Engelhardt, Jakob
|0 P:(DE-2719)2810460
|b 0
|e First author
|u dzne
111 2 _ |a 95th Annual Meeting of the German Physiological Society
|c Lübeck
|d 2016-03-03 - 2016-03-05
|w Germany
245 _ _ |a W01-5: Influence of auxiliary subunits on AMPAR function in hippo-campus and thalamus
260 _ _ |c 2016
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1597314194_1963
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|m journal
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a Auxiliary subunits modulate function, surface trafficking and subcellular localization of AMPA receptors. I will present data from our laboratory on how we investigate the func-tion of auxiliary subunits of the CKAMP and TARP families in heterologous expression systems, acute brain slices and in vivo. Number and properties of synaptic and extrasynaptic AMPA receptors in dentate gyrus granule cells and lateral geniculate relay neurons are strongly influenced by the inter-action with CKAMP44 and TARP y-8. Moreover, these two auxiliary subunits affect synaptic short-term and long-term plasticity. Finally, tetrode recordings from non-anaesthetized mice revealed that auxiliary proteins change the activity of neurons by modulating the integration of excitatory inputs.
536 _ _ |a 341 - Molecular Signaling (POF3-341)
|0 G:(DE-HGF)POF3-341
|c POF3-341
|f POF III
|x 0
773 _ _ |0 PERI:(DE-600)2219379-0
|n S707
|p Workshop 1
|t Acta physiologica
|v 216
|y 2016
|x 0001-6772
856 4 _ |u https://onlinelibrary.wiley.com/doi/epdf/10.1111/apha.12670
909 C O |o oai:pub.dzne.de:145574
|p VDB
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2810460
913 1 _ |a DE-HGF
|b Forschungsbereich Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-341
|2 G:(DE-HGF)POF3-300
|v Molecular Signaling
|x 0
914 1 _ |y 2016
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-02-26
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-02-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-02-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACTA PHYSIOL : 2018
|d 2020-02-26
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACTA PHYSIOL : 2018
|d 2020-02-26
920 1 _ |0 I:(DE-2719)1013023
|k AG Engelhardt
|l Synaptic Signalling and Neurodegeneration
|x 0
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a journal
980 _ _ |a I:(DE-2719)1013023
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21