000145643 001__ 145643
000145643 005__ 20200925192553.0
000145643 037__ $$aDZNE-2020-00973
000145643 041__ $$aEnglish
000145643 082__ $$a610
000145643 1001_ $$0P:(DE-HGF)0$$aHecker, J.$$b0
000145643 1112_ $$a43rd European Mathematical Genetics Meeting  2015$$cBrest$$d2015-04-16 - 2015-04-17$$gEMGM$$wFrance
000145643 245__ $$aA18_ Heritability Estimation from Summary StatisticsUsing Generalized Estimating Equations
000145643 260__ $$c2015
000145643 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1597407188_15933
000145643 3367_ $$033$$2EndNote$$aConference Paper
000145643 3367_ $$2BibTeX$$aINPROCEEDINGS
000145643 3367_ $$2DRIVER$$aconferenceObject
000145643 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$mjournal
000145643 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000145643 3367_ $$2ORCID$$aOTHER
000145643 520__ $$aUnder the assumption of a polygenic architecture, Yangshowed for complex traits that the test statistics in genome-wideassociation studies are expected to be inflated, even in the absenceof confounding biases like cryptic relatedness or population stratification (Yang et al., 2011).In a recently published work, Bulik-Sullivan and Finucane (Bulik-Sullivan et al., 2015) provide a methodological approach to differentiate between an inflation resulting from a polygenic architecture and from cryptic relatedness by considering all test statisticssimultaneously. This makes it also possible to estimate the narrowsense heritability from summary statistics without requiring individual-level genotype data.The approach of Bulik-Sullivan and Finucane (Bulik-Sullivanet al., 2015) estimates so-called LD Scores from a reference paneland utilizes these quantities as covariates in a weighted linear regression of the squared test statistics. Since the test statistics are notindependent of each other, a bootstrap estimator is applied to obtain robust standard errors.Building on the same mean model, our objective is to incorporate more useful extern information into the estimation in orderto improve the efficiency of the estimation. In particular, we dividethe genomic region into blocks of moderate size. For these blocks,the correlation structure between squared test statistics can be wellapproximated by LD information from a reference panel. Our estimation procedure is based on generalized estimating equations(GEE). We use the LD information to set up the working-correlation matrices for each block, whereas we do not require that nearby blocks are independent. We show that the GEE-related asymptotic results are still valid under reasonable assumptions. It is important to note that the working-correlation matrices are notrequired to be exactly the true correlation matrices in order to obtain consistent estimates and correct standard errors.In conclusion, these results imply that our approach improvesthe heritability estimation framework.
000145643 536__ $$0G:(DE-HGF)POF3-345$$a345 - Population Studies and Genetics (POF3-345)$$cPOF3-345$$fPOF III$$x0
000145643 7001_ $$0P:(DE-HGF)0$$aProkopenko, D.$$b1
000145643 7001_ $$0P:(DE-2719)9000181$$aLange, Christoph$$b2$$udzne
000145643 7001_ $$0P:(DE-HGF)0$$aLoehlein Fier, H.$$b3
000145643 773__ $$0PERI:(DE-600)1482710-4$$n1$$p36$$tHuman heredity$$v79$$x0001-5652$$y2015
000145643 8564_ $$uhttps://www.karger.com/Article/PDF/381109
000145643 909CO $$ooai:pub.dzne.de:145643$$pVDB
000145643 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9000181$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000145643 9131_ $$0G:(DE-HGF)POF3-345$$1G:(DE-HGF)POF3-340$$2G:(DE-HGF)POF3-300$$aDE-HGF$$bForschungsbereich Gesundheit$$lErkrankungen des Nervensystems$$vPopulation Studies and Genetics$$x0
000145643 9141_ $$y2015
000145643 915__ $$0StatID:(DE-HGF)0410$$2StatID$$aAllianz-Lizenz$$d2020-01-11$$wger
000145643 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-11$$wger
000145643 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHUM HERED : 2018$$d2020-01-11
000145643 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-11
000145643 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-11
000145643 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-11
000145643 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-11
000145643 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-11
000145643 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-11
000145643 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-11
000145643 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-11
000145643 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-11
000145643 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-11
000145643 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-01-11
000145643 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-11
000145643 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-11
000145643 9201_ $$0I:(DE-2719)7000008$$kU T4 Researchers - Bonn$$lU T4 Researchers - Bonn$$x0
000145643 980__ $$aabstract
000145643 980__ $$aVDB
000145643 980__ $$ajournal
000145643 980__ $$aI:(DE-2719)7000008
000145643 980__ $$aUNRESTRICTED