001     145643
005     20200925192553.0
037 _ _ |a DZNE-2020-00973
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Hecker, J.
|0 P:(DE-HGF)0
|b 0
111 2 _ |a 43rd European Mathematical Genetics Meeting 2015
|g EMGM
|c Brest
|d 2015-04-16 - 2015-04-17
|w France
245 _ _ |a A18_ Heritability Estimation from Summary StatisticsUsing Generalized Estimating Equations
260 _ _ |c 2015
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1597407188_15933
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|m journal
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a Under the assumption of a polygenic architecture, Yangshowed for complex traits that the test statistics in genome-wideassociation studies are expected to be inflated, even in the absenceof confounding biases like cryptic relatedness or population stratification (Yang et al., 2011).In a recently published work, Bulik-Sullivan and Finucane (Bulik-Sullivan et al., 2015) provide a methodological approach to differentiate between an inflation resulting from a polygenic architecture and from cryptic relatedness by considering all test statisticssimultaneously. This makes it also possible to estimate the narrowsense heritability from summary statistics without requiring individual-level genotype data.The approach of Bulik-Sullivan and Finucane (Bulik-Sullivanet al., 2015) estimates so-called LD Scores from a reference paneland utilizes these quantities as covariates in a weighted linear regression of the squared test statistics. Since the test statistics are notindependent of each other, a bootstrap estimator is applied to obtain robust standard errors.Building on the same mean model, our objective is to incorporate more useful extern information into the estimation in orderto improve the efficiency of the estimation. In particular, we dividethe genomic region into blocks of moderate size. For these blocks,the correlation structure between squared test statistics can be wellapproximated by LD information from a reference panel. Our estimation procedure is based on generalized estimating equations(GEE). We use the LD information to set up the working-correlation matrices for each block, whereas we do not require that nearby blocks are independent. We show that the GEE-related asymptotic results are still valid under reasonable assumptions. It is important to note that the working-correlation matrices are notrequired to be exactly the true correlation matrices in order to obtain consistent estimates and correct standard errors.In conclusion, these results imply that our approach improvesthe heritability estimation framework.
536 _ _ |a 345 - Population Studies and Genetics (POF3-345)
|0 G:(DE-HGF)POF3-345
|c POF3-345
|f POF III
|x 0
700 1 _ |a Prokopenko, D.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lange, Christoph
|0 P:(DE-2719)9000181
|b 2
|u dzne
700 1 _ |a Loehlein Fier, H.
|0 P:(DE-HGF)0
|b 3
773 _ _ |0 PERI:(DE-600)1482710-4
|n 1
|p 36
|t Human heredity
|v 79
|y 2015
|x 0001-5652
856 4 _ |u https://www.karger.com/Article/PDF/381109
909 C O |o oai:pub.dzne.de:145643
|p VDB
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9000181
913 1 _ |a DE-HGF
|b Forschungsbereich Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-345
|2 G:(DE-HGF)POF3-300
|v Population Studies and Genetics
|x 0
914 1 _ |y 2015
915 _ _ |a Allianz-Lizenz
|0 StatID:(DE-HGF)0410
|2 StatID
|d 2020-01-11
|w ger
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-11
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b HUM HERED : 2018
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-11
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-11
920 1 _ |0 I:(DE-2719)7000008
|k U T4 Researchers - Bonn
|l U T4 Researchers - Bonn
|x 0
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a journal
980 _ _ |a I:(DE-2719)7000008
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21