001     145644
005     20200925192554.0
037 _ _ |a DZNE-2020-00974
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Prokopenko, D.
|0 P:(DE-HGF)0
|b 0
111 2 _ |a 43rd European Mathematical Genetics Meeting 2015
|g EMGM
|c Brest
|d 2015-04-16 - 2015-04-17
|w France
245 _ _ |a A36: Utilizing the Jaccard Index to Reveal PopulationStratification in Sequencing Data: A SimulationStudy and an Application to the 1000 GenomesProject
260 _ _ |c 2015
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1597407370_15935
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|m journal
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a Population stratification is one of the major sources of confounding in genetic association studies, potentially causing falsepositive and false-negative results. The effectiveness of existingadjustment approaches which are mostly built on the estimationof the genetic variance/covariance matrix is unclear for rare variants, since those variants are genetically much ‘younger’ andmight represent a different pattern of population structure.Here, we present a novel approach for the identification of population substructure in high density-genotyping data/next generation sequencing data. The approach exploits the co-appearances of rare genetic variants in individuals. The method can beapplied to all available genetic loci, does not require linkage disequilibrium (LD) pruning, and is computationally fast. Usingsequencing data from the 1000 Genomes Project, the features of the approach are illustrated and compared to existing methodology (i.e. EIGENSTRAT). We find that our approach works particularly well for genetic loci with very small minor allele frequencies. The results suggest that the inclusion of rare-variantdata/sequencing data in our approach provides a much higherresolution-picture of population-substructure than it can be obtained with existing methodology. Furthermore, we performedextensive simulation studies based on the minor allele frequencies of the European populations. We find scenarios where ourmethod was able to control the type 1 error more precisely andshowed higher power.
536 _ _ |a 345 - Population Studies and Genetics (POF3-345)
|0 G:(DE-HGF)POF3-345
|c POF3-345
|f POF III
|x 0
700 1 _ |a Hecker, J.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Silverman, E.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Pagano, M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Noethen, M.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Lange, Christoph
|0 P:(DE-2719)9000181
|b 5
|u dzne
700 1 _ |a Loehlein Fie, H.
|0 P:(DE-HGF)0
|b 6
773 _ _ |0 PERI:(DE-600)1482710-4
|n 1
|p 44
|t Human heredity
|v 79
|y 2015
|x 0001-5652
856 4 _ |u https://www.karger.com/Article/PDF/381109
909 C O |o oai:pub.dzne.de:145644
|p VDB
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)9000181
913 1 _ |a DE-HGF
|b Forschungsbereich Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-345
|2 G:(DE-HGF)POF3-300
|v Population Studies and Genetics
|x 0
914 1 _ |y 2015
915 _ _ |a Allianz-Lizenz
|0 StatID:(DE-HGF)0410
|2 StatID
|d 2020-01-11
|w ger
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-11
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b HUM HERED : 2018
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-11
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-11
920 1 _ |0 I:(DE-2719)7000008
|k U T4 Researchers - Bonn
|l U T4 Researchers - Bonn
|x 0
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a journal
980 _ _ |a I:(DE-2719)7000008
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21