000151065 001__ 151065
000151065 005__ 20230915093948.0
000151065 0247_ $$2pmc$$apmc:PMC7135991
000151065 0247_ $$2doi$$a10.1074/jbc.RA119.011902
000151065 0247_ $$2ISSN$$a0006-3347
000151065 0247_ $$2ISSN$$a0021-9258
000151065 0247_ $$2ISSN$$a1067-8816
000151065 0247_ $$2ISSN$$a1083-351X
000151065 0247_ $$2ISSN$$a2516-5151
000151065 0247_ $$2altmetric$$aaltmetric:76738764
000151065 0247_ $$2pmid$$apmid:32094224
000151065 037__ $$aDZNE-2020-01050
000151065 041__ $$aEnglish
000151065 082__ $$a610
000151065 1001_ $$00000-0003-4029-160X$$aSzibor, Marten$$b0
000151065 245__ $$aCytosolic, but not matrix, calcium is essential for adjustment of mitochondrial pyruvate supply
000151065 260__ $$aBethesda, MD.$$bAmerican Soc. for Biochemistry and Molecular Biology8772$$c2020
000151065 264_1 $$2Crossref$$3online$$bAmerican Society for Biochemistry & Molecular Biology (ASBMB)$$c2020-02-24
000151065 264_1 $$2Crossref$$3print$$bAmerican Society for Biochemistry & Molecular Biology (ASBMB)$$c2020-04-03
000151065 3367_ $$2DRIVER$$aarticle
000151065 3367_ $$2DataCite$$aOutput Types/Journal article
000151065 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600424885_22646
000151065 3367_ $$2BibTeX$$aARTICLE
000151065 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000151065 3367_ $$00$$2EndNote$$aJournal Article
000151065 520__ $$aMitochondrial oxidative phosphorylation (OXPHOS) and cellular workload are tightly balanced by the key cellular regulator, calcium (Ca2+). Current models assume that cytosolic Ca2+ regulates workload and that mitochondrial Ca2+ uptake precedes activation of matrix dehydrogenases, thereby matching OXPHOS substrate supply to ATP demand. Surprisingly, knockout (KO) of the mitochondrial Ca2+ uniporter (MCU) in mice results in only minimal phenotypic changes and does not alter OXPHOS. This implies that adaptive activation of mitochondrial dehydrogenases by intramitochondrial Ca2+ cannot be the exclusive mechanism for OXPHOS control. We hypothesized that cytosolic Ca2+, but not mitochondrial matrix Ca2+, may adapt OXPHOS to workload by adjusting the rate of pyruvate supply from the cytosol to the mitochondria. Here, we studied the role of malate-aspartate shuttle (MAS)-dependent substrate supply in OXPHOS responses to changing Ca2+ concentrations in isolated brain and heart mitochondria, synaptosomes, fibroblasts, and thymocytes from WT and MCU KO mice and the isolated working rat heart. Our results indicate that extramitochondrial Ca2+ controls up to 85% of maximal pyruvate-driven OXPHOS rates, mediated by the activity of the complete MAS, and that intramitochondrial Ca2+ accounts for the remaining 15%. Of note, the complete MAS, as applied here, included besides its classical NADH oxidation reaction the generation of cytosolic pyruvate. Part of this largely neglected mechanism has previously been described as the “mitochondrial gas pedal.” Its implementation into OXPHOS control models integrates seemingly contradictory results and warrants a critical reappraisal of metabolic control mechanisms in health and disease.
000151065 536__ $$0G:(DE-HGF)POF3-344$$a344 - Clinical and Health Care Research (POF3-344)$$cPOF3-344$$fPOF III$$x0
000151065 542__ $$2Crossref$$i2020-04-01$$uhttps://www.elsevier.com/tdm/userlicense/1.0/
000151065 542__ $$2Crossref$$i2020-11-13$$uhttp://creativecommons.org/licenses/by/4.0/
000151065 588__ $$aDataset connected to CrossRef
000151065 650_2 $$2MeSH$$aAnimals
000151065 650_2 $$2MeSH$$aAspartic Acid: metabolism
000151065 650_2 $$2MeSH$$aBrain: metabolism
000151065 650_2 $$2MeSH$$aCalcium: metabolism
000151065 650_2 $$2MeSH$$aCalcium Channels: deficiency
000151065 650_2 $$2MeSH$$aCalcium Channels: genetics
000151065 650_2 $$2MeSH$$aCytosol: metabolism
000151065 650_2 $$2MeSH$$aGlutamic Acid: chemistry
000151065 650_2 $$2MeSH$$aGlutamic Acid: metabolism
000151065 650_2 $$2MeSH$$aHeart: physiology
000151065 650_2 $$2MeSH$$aMalates: chemistry
000151065 650_2 $$2MeSH$$aMalates: metabolism
000151065 650_2 $$2MeSH$$aMembrane Potential, Mitochondrial
000151065 650_2 $$2MeSH$$aMice
000151065 650_2 $$2MeSH$$aMice, Inbred C57BL
000151065 650_2 $$2MeSH$$aMice, Knockout
000151065 650_2 $$2MeSH$$aMitochondria: metabolism
000151065 650_2 $$2MeSH$$aMyocardium: metabolism
000151065 650_2 $$2MeSH$$aOxidative Phosphorylation
000151065 650_2 $$2MeSH$$aPyruvic Acid: metabolism
000151065 650_2 $$2MeSH$$aRats
000151065 650_2 $$2MeSH$$aSubstrate Specificity
000151065 650_2 $$2MeSH$$aSynaptosomes: metabolism
000151065 7001_ $$aGizatullina, Zemfira$$b1
000151065 7001_ $$00000-0003-1723-1780$$aGainutdinov, Timur$$b2
000151065 7001_ $$00000-0003-4263-2922$$aEndres, Thomas$$b3
000151065 7001_ $$0P:(DE-HGF)0$$aDebska-Vielhaber, Grazyna$$b4
000151065 7001_ $$aKunz, Matthias$$b5
000151065 7001_ $$aKaravasili, Niki$$b6
000151065 7001_ $$aHallmann, Kerstin$$b7
000151065 7001_ $$0P:(DE-2719)9000986$$aSchreiber, Frank$$b8$$udzne
000151065 7001_ $$aBamberger, Alexandra$$b9
000151065 7001_ $$00000-0001-9698-4830$$aSchwarzer, Michael$$b10
000151065 7001_ $$aDoenst, Torsten$$b11
000151065 7001_ $$0P:(DE-2719)2260426$$aHeinze, Hans-Jochen$$b12$$udzne
000151065 7001_ $$aLessmann, Volkmar$$b13
000151065 7001_ $$0P:(DE-2719)2000035$$aVielhaber, Stefan$$b14$$udzne
000151065 7001_ $$00000-0003-1113-3493$$aKunz, Wolfram S.$$b15
000151065 7001_ $$00000-0002-6550-4555$$aGellerich, Frank N.$$b16
000151065 77318 $$2Crossref$$3journal-article$$a10.1074/jbc.ra119.011902$$bElsevier BV$$d2020-04-01$$n14$$p4383-4397$$tJournal of Biological Chemistry$$v295$$x0021-9258$$y2020
000151065 773__ $$0PERI:(DE-600)1474604-9$$a10.1074/jbc.RA119.011902$$gVol. 295, no. 14, p. 4383 - 4397$$n14$$p4383-4397$$tThe journal of biological chemistry$$v295$$x0021-9258$$y2020
000151065 8564_ $$uhttps://www.jbc.org/content/295/14/4383.long
000151065 909CO $$ooai:pub.dzne.de:151065$$pVDB
000151065 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9000986$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b8$$kDZNE
000151065 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2260426$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b12$$kDZNE
000151065 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2000035$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b14$$kDZNE
000151065 9131_ $$0G:(DE-HGF)POF3-344$$1G:(DE-HGF)POF3-340$$2G:(DE-HGF)POF3-300$$aDE-HGF$$bForschungsbereich Gesundheit$$lErkrankungen des Nervensystems$$vClinical and Health Care Research$$x0
000151065 9141_ $$y2020
000151065 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-24
000151065 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-24
000151065 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ BIOL CHEM : 2019$$d2021-05-04
000151065 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000151065 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000151065 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-05-04
000151065 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-05-04
000151065 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-05-04
000151065 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000151065 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-05-04
000151065 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-05-04
000151065 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000151065 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000151065 9201_ $$0I:(DE-2719)6000015$$kMagdeburg Pre 2020$$lMagdeburg Pre 2020$$x0
000151065 9201_ $$0I:(DE-2719)7000000$$kU Clinical Researchers - Magdeburg$$lU Clinical Researchers - Magdeburg$$x1
000151065 980__ $$ajournal
000151065 980__ $$aVDB
000151065 980__ $$aI:(DE-2719)6000015
000151065 980__ $$aI:(DE-2719)7000000
000151065 980__ $$aUNRESTRICTED
000151065 999C5 $$1Denton$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev.ph.52.030190.002315$$p451 -$$tAnnu. Rev. Physiol$$v52$$y1990
000151065 999C5 $$1Carafoli$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.bbabio.2010.03.024$$p595 -$$tBiochim. Biophys. Acta$$v1797$$y2010
000151065 999C5 $$1Balaban$$2Crossref$$9-- missing cx lookup --$$a10.1006/jmcc.2002.2082$$p1259 -$$tJ. Mol. Cell Cardiol$$v34$$y2002
000151065 999C5 $$1McCormack$$2Crossref$$9-- missing cx lookup --$$a10.1152/physrev.1990.70.2.391$$p391 -$$tPhysiol. Rev$$v70$$y1990
000151065 999C5 $$1Korzeniewski$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.bpc.2007.05.013$$p93 -$$tBiophys. Chem$$v129$$y2007
000151065 999C5 $$1Korzeniewski$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.pbiomolbio.2016.12.001$$p1 -$$tProg. Biophys. Mol. Biol$$v125$$y2017
000151065 999C5 $$1Heinrich$$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1432-1033.1974.tb03318.x$$p89 -$$tEur. J. Biochem$$v42$$y1974
000151065 999C5 $$1Mazat$$2Crossref$$9-- missing cx lookup --$$a10.1023/A:1006875517267$$p143 -$$tMol. Cell Biochem$$v174$$y1997
000151065 999C5 $$1Pan$$2Crossref$$9-- missing cx lookup --$$a10.1038/ncb2868$$p1464 -$$tNat. Cell Biol$$v15$$y2013
000151065 999C5 $$1Holmström$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.yjmcc.2015.05.022$$p178 -$$tJ. Mol. Cell Cardiol$$v85$$y2015
000151065 999C5 $$1Luongo$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.celrep.2015.06.017$$p23 -$$tCell Rep$$v12$$y2015
000151065 999C5 $$1Kwong$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.celrep.2015.06.002$$p15 -$$tCell Rep$$v12$$y2015
000151065 999C5 $$1Rasmussen$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1504705112$$p9129 -$$tProc. Natl. Acad. Sci. U.S.A$$v112$$y2015
000151065 999C5 $$1Nichols$$2Crossref$$9-- missing cx lookup --$$a10.1177/0271678X16682250$$p3027 -$$tJ. Cereb. Blood Flow Metab$$v37$$y2017
000151065 999C5 $$1Wu$$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms7081$$p6081 -$$tNat. Commun$$v6$$y2015
000151065 999C5 $$1Hamilton$$2Crossref$$9-- missing cx lookup --$$a10.1074/jbc.RA118.002926$$p15652 -$$tJ. Biol. Chem$$v293$$y2018
000151065 999C5 $$1Koval$$2Crossref$$9-- missing cx lookup --$$a10.1126/scisignal.aav1439$$peaav1439 -$$tSci. Signal$$v12$$y2019
000151065 999C5 $$1Wang$$2Crossref$$oWang 2018$$y2018
000151065 999C5 $$1Gellerich$$2Crossref$$9-- missing cx lookup --$$a10.1042/BJ20110765$$p747 -$$tBiochem. J$$v443$$y2012
000151065 999C5 $$1Gellerich$$2Crossref$$9-- missing cx lookup --$$a10.1002/iub.1131$$p180 -$$tIUBMB Life$$v65$$y2013
000151065 999C5 $$1Gellerich$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.bbabio.2010.02.005$$p1018 -$$tBiochim. Biophys. Acta$$v1797$$y2010
000151065 999C5 $$1Gellerich$$2Crossref$$9-- missing cx lookup --$$a10.1074/jbc.M709555200$$p30715 -$$tJ. Biol. Chem$$v283$$y2008
000151065 999C5 $$1Palmieri$$2Crossref$$9-- missing cx lookup --$$a10.1093/emboj/20.18.5060$$p5060 -$$tEMBO J$$v20$$y2001
000151065 999C5 $$1Satrústegui$$2Crossref$$9-- missing cx lookup --$$a10.1152/physrev.00005.2006$$p29 -$$tPhysiol. Rev$$v87$$y2007
000151065 999C5 $$1Contreras$$2Crossref$$9-- missing cx lookup --$$a10.1074/jbc.M808066200$$p7091 -$$tJ. Biol. Chem$$v284$$y2009
000151065 999C5 $$1Llorente-Folch$$2Crossref$$9-- missing cx lookup --$$a10.1523/JNEUROSCI.0929-13.2013$$p13957 -$$tJ. Neurosci$$v33$$y2013
000151065 999C5 $$1Amoedo$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.bbamcr.2016.04.011$$p2394 -$$tBiochim. Biophys. Acta$$v1863$$y2016
000151065 999C5 $$1Scholz$$2Crossref$$9-- missing cx lookup --$$a10.1203/00006450-199508000-00015$$p221 -$$tPediatr. Res$$v38$$y1995
000151065 999C5 $$1Monné$$2Crossref$$9-- missing cx lookup --$$a10.3390/ijms20184456$$pE4456 -$$tInt. J. Mol. Sci$$v20$$y2019
000151065 999C5 $$1Fiermonte$$2Crossref$$9-- missing cx lookup --$$a10.1074/jbc.M201572200$$p19289 -$$tJ. Biol. Chem$$v277$$y2002
000151065 999C5 $$1Kauppinen$$2Crossref$$9-- missing cx lookup --$$a10.1016/0014-5793(86)80484-7$$p222 -$$tFEBS Lett$$v199$$y1986
000151065 999C5 $$1Kauppinen$$2Crossref$$9-- missing cx lookup --$$a10.1016/0167-4889(87)90029-2$$p173 -$$tBiochim. Biophys. Acta$$v930$$y1987
000151065 999C5 $$1Tang$$2Crossref$$9-- missing cx lookup --$$a10.1152/ajpheart.00137.2008$$pH297 -$$tAm. J. Physiol. Heart Circ. Physiol$$v295$$y2008
000151065 999C5 $$1Ikeda$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0896-6273(03)00164-8$$p253 -$$tNeuron$$v38$$y2003
000151065 999C5 $$1Colwell$$2Crossref$$9-- missing cx lookup --$$a10.1046/j.1460-9568.2000.00939.x$$p571 -$$tEur. J. Neurosci$$v12$$y2000
000151065 999C5 $$1Wibom$$2Crossref$$9-- missing cx lookup --$$a10.1056/NEJMoa0900591$$p489 -$$tN. Engl. J. Med$$v361$$y2009
000151065 999C5 $$1Falk$$2Crossref$$9-- missing cx lookup --$$a10.1007/8904_2013_287$$p77 -$$tJIMD Rep$$v14$$y2014
000151065 999C5 $$1Juaristi$$2Crossref$$9-- missing cx lookup --$$a10.1111/jnc.14047$$p132 -$$tJ. Neurochem$$v142$$y2017
000151065 999C5 $$1McKenna$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.bcp.2005.10.011$$p399 -$$tBiochem. Pharmacol$$v71$$y2006
000151065 999C5 $$1Abbrescia$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.abb.2011.12.021$$p157 -$$tArch. Biochem. Biophys$$v518$$y2012
000151065 999C5 $$1Logan$$2Crossref$$9-- missing cx lookup --$$a10.1038/ng.2851$$p188 -$$tNat. Genet$$v46$$y2014
000151065 999C5 $$1Tsai$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1702938114$$p4388 -$$tProc. Natl. Acad. Sci. U.S.A$$v114$$y2017
000151065 999C5 $$1König$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.molcel.2016.08.020$$p148 -$$tMol. Cell$$v64$$y2016
000151065 999C5 $$1Psotta$$2Crossref$$9-- missing cx lookup --$$a10.3389/fnbeh.2015.00058$$p58 -$$tFront. Behav. Neurosci$$v9$$y2015
000151065 999C5 $$1Petzold$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nlm.2015.02.009$$p52 -$$tNeurobiol. Learn Mem$$v120$$y2015
000151065 999C5 $$1Kudin$$2Crossref$$9-- missing cx lookup --$$a10.1074/jbc.M310341200$$p4127 -$$tJ. Biol. Chem$$v279$$y2004
000151065 999C5 $$1Gizatullina$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0006-291X(03)00654-5$$p643 -$$tBiochem. Biophys. Res. Commun$$v304$$y2003
000151065 999C5 $$1Grynkiewicz$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0021-9258(19)83641-4$$p3440 -$$tJ. Biol. Chem$$v260$$y1985
000151065 999C5 $$1Gnaiger$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0034-5687(01)00307-3$$p277 -$$tRespir. Physiol$$v128$$y2001
000151065 999C5 $$1Fröhlich$$2Crossref$$9-- missing cx lookup --$$a10.1007/s12035-015-9399-4$$p4728 -$$tMol. Neurobiol$$v53$$y2016
000151065 999C5 $$1Rosenthal$$2Crossref$$9-- missing cx lookup --$$a10.1038/jcbfm.1987.130$$p752 -$$tJ. Cereb. Blood Flow Metab$$v7$$y1987
000151065 999C5 $$1Sims$$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1471-4159.1990.tb04189.x$$p698 -$$tJ. Neurochem$$v55$$y1990
000151065 999C5 $$1Keira$$2Crossref$$9-- missing cx lookup --$$a10.1590/S0102-86502004000700004$$p11 -$$tActa Cirurgica Brasileira$$v19$$y2004
000151065 999C5 $$1Schwarzer$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00395-009-0015-5$$p547 -$$tBasic Res. Cardiol$$v104$$y2009
000151065 999C5 $$1Doenst$$2Crossref$$oDoenst 1996$$y1996
000151065 999C5 $$1Doenst$$2Crossref$$9-- missing cx lookup --$$a10.1023/A:1006863728395$$p153 -$$tMol. Cell Biochem$$v180$$y1998