TY - JOUR
AU - Szibor, Marten
AU - Gizatullina, Zemfira
AU - Gainutdinov, Timur
AU - Endres, Thomas
AU - Debska-Vielhaber, Grazyna
AU - Kunz, Matthias
AU - Karavasili, Niki
AU - Hallmann, Kerstin
AU - Schreiber, Frank
AU - Bamberger, Alexandra
AU - Schwarzer, Michael
AU - Doenst, Torsten
AU - Heinze, Hans-Jochen
AU - Lessmann, Volkmar
AU - Vielhaber, Stefan
AU - Kunz, Wolfram S.
AU - Gellerich, Frank N.
TI - Cytosolic, but not matrix, calcium is essential for adjustment of mitochondrial pyruvate supply
JO - The journal of biological chemistry
VL - 295
IS - 14
SN - 0021-9258
CY - Bethesda, MD.
PB - American Soc. for Biochemistry and Molecular Biology8772
M1 - DZNE-2020-01050
SP - 4383-4397
PY - 2020
AB - Mitochondrial oxidative phosphorylation (OXPHOS) and cellular workload are tightly balanced by the key cellular regulator, calcium (Ca2+). Current models assume that cytosolic Ca2+ regulates workload and that mitochondrial Ca2+ uptake precedes activation of matrix dehydrogenases, thereby matching OXPHOS substrate supply to ATP demand. Surprisingly, knockout (KO) of the mitochondrial Ca2+ uniporter (MCU) in mice results in only minimal phenotypic changes and does not alter OXPHOS. This implies that adaptive activation of mitochondrial dehydrogenases by intramitochondrial Ca2+ cannot be the exclusive mechanism for OXPHOS control. We hypothesized that cytosolic Ca2+, but not mitochondrial matrix Ca2+, may adapt OXPHOS to workload by adjusting the rate of pyruvate supply from the cytosol to the mitochondria. Here, we studied the role of malate-aspartate shuttle (MAS)-dependent substrate supply in OXPHOS responses to changing Ca2+ concentrations in isolated brain and heart mitochondria, synaptosomes, fibroblasts, and thymocytes from WT and MCU KO mice and the isolated working rat heart. Our results indicate that extramitochondrial Ca2+ controls up to 85
KW - Animals
KW - Aspartic Acid: metabolism
KW - Brain: metabolism
KW - Calcium: metabolism
KW - Calcium Channels: deficiency
KW - Calcium Channels: genetics
KW - Cytosol: metabolism
KW - Glutamic Acid: chemistry
KW - Glutamic Acid: metabolism
KW - Heart: physiology
KW - Malates: chemistry
KW - Malates: metabolism
KW - Membrane Potential, Mitochondrial
KW - Mice
KW - Mice, Inbred C57BL
KW - Mice, Knockout
KW - Mitochondria: metabolism
KW - Myocardium: metabolism
KW - Oxidative Phosphorylation
KW - Pyruvic Acid: metabolism
KW - Rats
KW - Substrate Specificity
KW - Synaptosomes: metabolism
LB - PUB:(DE-HGF)16
C2 - pmc:PMC7135991
C6 - pmid:32094224
DO - DOI:10.1074/jbc.RA119.011902
UR - https://pub.dzne.de/record/151065
ER -