Home > Publications Database > Cytosolic, but not matrix, calcium is essential for adjustment of mitochondrial pyruvate supply > print |
001 | 151065 | ||
005 | 20230915093948.0 | ||
024 | 7 | _ | |a pmc:PMC7135991 |2 pmc |
024 | 7 | _ | |a 10.1074/jbc.RA119.011902 |2 doi |
024 | 7 | _ | |a 0006-3347 |2 ISSN |
024 | 7 | _ | |a 0021-9258 |2 ISSN |
024 | 7 | _ | |a 1067-8816 |2 ISSN |
024 | 7 | _ | |a 1083-351X |2 ISSN |
024 | 7 | _ | |a 2516-5151 |2 ISSN |
024 | 7 | _ | |a altmetric:76738764 |2 altmetric |
024 | 7 | _ | |a pmid:32094224 |2 pmid |
037 | _ | _ | |a DZNE-2020-01050 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Szibor, Marten |0 0000-0003-4029-160X |b 0 |
245 | _ | _ | |a Cytosolic, but not matrix, calcium is essential for adjustment of mitochondrial pyruvate supply |
260 | _ | _ | |a Bethesda, MD. |c 2020 |b American Soc. for Biochemistry and Molecular Biology8772 |
264 | _ | 1 | |3 online |2 Crossref |b American Society for Biochemistry & Molecular Biology (ASBMB) |c 2020-02-24 |
264 | _ | 1 | |3 print |2 Crossref |b American Society for Biochemistry & Molecular Biology (ASBMB) |c 2020-04-03 |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1600424885_22646 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Mitochondrial oxidative phosphorylation (OXPHOS) and cellular workload are tightly balanced by the key cellular regulator, calcium (Ca2+). Current models assume that cytosolic Ca2+ regulates workload and that mitochondrial Ca2+ uptake precedes activation of matrix dehydrogenases, thereby matching OXPHOS substrate supply to ATP demand. Surprisingly, knockout (KO) of the mitochondrial Ca2+ uniporter (MCU) in mice results in only minimal phenotypic changes and does not alter OXPHOS. This implies that adaptive activation of mitochondrial dehydrogenases by intramitochondrial Ca2+ cannot be the exclusive mechanism for OXPHOS control. We hypothesized that cytosolic Ca2+, but not mitochondrial matrix Ca2+, may adapt OXPHOS to workload by adjusting the rate of pyruvate supply from the cytosol to the mitochondria. Here, we studied the role of malate-aspartate shuttle (MAS)-dependent substrate supply in OXPHOS responses to changing Ca2+ concentrations in isolated brain and heart mitochondria, synaptosomes, fibroblasts, and thymocytes from WT and MCU KO mice and the isolated working rat heart. Our results indicate that extramitochondrial Ca2+ controls up to 85% of maximal pyruvate-driven OXPHOS rates, mediated by the activity of the complete MAS, and that intramitochondrial Ca2+ accounts for the remaining 15%. Of note, the complete MAS, as applied here, included besides its classical NADH oxidation reaction the generation of cytosolic pyruvate. Part of this largely neglected mechanism has previously been described as the “mitochondrial gas pedal.” Its implementation into OXPHOS control models integrates seemingly contradictory results and warrants a critical reappraisal of metabolic control mechanisms in health and disease. |
536 | _ | _ | |a 344 - Clinical and Health Care Research (POF3-344) |0 G:(DE-HGF)POF3-344 |c POF3-344 |f POF III |x 0 |
542 | _ | _ | |i 2020-04-01 |2 Crossref |u https://www.elsevier.com/tdm/userlicense/1.0/ |
542 | _ | _ | |i 2020-11-13 |2 Crossref |u http://creativecommons.org/licenses/by/4.0/ |
588 | _ | _ | |a Dataset connected to CrossRef |
650 | _ | 2 | |a Animals |2 MeSH |
650 | _ | 2 | |a Aspartic Acid: metabolism |2 MeSH |
650 | _ | 2 | |a Brain: metabolism |2 MeSH |
650 | _ | 2 | |a Calcium: metabolism |2 MeSH |
650 | _ | 2 | |a Calcium Channels: deficiency |2 MeSH |
650 | _ | 2 | |a Calcium Channels: genetics |2 MeSH |
650 | _ | 2 | |a Cytosol: metabolism |2 MeSH |
650 | _ | 2 | |a Glutamic Acid: chemistry |2 MeSH |
650 | _ | 2 | |a Glutamic Acid: metabolism |2 MeSH |
650 | _ | 2 | |a Heart: physiology |2 MeSH |
650 | _ | 2 | |a Malates: chemistry |2 MeSH |
650 | _ | 2 | |a Malates: metabolism |2 MeSH |
650 | _ | 2 | |a Membrane Potential, Mitochondrial |2 MeSH |
650 | _ | 2 | |a Mice |2 MeSH |
650 | _ | 2 | |a Mice, Inbred C57BL |2 MeSH |
650 | _ | 2 | |a Mice, Knockout |2 MeSH |
650 | _ | 2 | |a Mitochondria: metabolism |2 MeSH |
650 | _ | 2 | |a Myocardium: metabolism |2 MeSH |
650 | _ | 2 | |a Oxidative Phosphorylation |2 MeSH |
650 | _ | 2 | |a Pyruvic Acid: metabolism |2 MeSH |
650 | _ | 2 | |a Rats |2 MeSH |
650 | _ | 2 | |a Substrate Specificity |2 MeSH |
650 | _ | 2 | |a Synaptosomes: metabolism |2 MeSH |
700 | 1 | _ | |a Gizatullina, Zemfira |b 1 |
700 | 1 | _ | |a Gainutdinov, Timur |0 0000-0003-1723-1780 |b 2 |
700 | 1 | _ | |a Endres, Thomas |0 0000-0003-4263-2922 |b 3 |
700 | 1 | _ | |a Debska-Vielhaber, Grazyna |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Kunz, Matthias |b 5 |
700 | 1 | _ | |a Karavasili, Niki |b 6 |
700 | 1 | _ | |a Hallmann, Kerstin |b 7 |
700 | 1 | _ | |a Schreiber, Frank |0 P:(DE-2719)9000986 |b 8 |u dzne |
700 | 1 | _ | |a Bamberger, Alexandra |b 9 |
700 | 1 | _ | |a Schwarzer, Michael |0 0000-0001-9698-4830 |b 10 |
700 | 1 | _ | |a Doenst, Torsten |b 11 |
700 | 1 | _ | |a Heinze, Hans-Jochen |0 P:(DE-2719)2260426 |b 12 |u dzne |
700 | 1 | _ | |a Lessmann, Volkmar |b 13 |
700 | 1 | _ | |a Vielhaber, Stefan |0 P:(DE-2719)2000035 |b 14 |u dzne |
700 | 1 | _ | |a Kunz, Wolfram S. |0 0000-0003-1113-3493 |b 15 |
700 | 1 | _ | |a Gellerich, Frank N. |0 0000-0002-6550-4555 |b 16 |
773 | 1 | 8 | |a 10.1074/jbc.ra119.011902 |b Elsevier BV |d 2020-04-01 |n 14 |p 4383-4397 |3 journal-article |2 Crossref |t Journal of Biological Chemistry |v 295 |y 2020 |x 0021-9258 |
773 | _ | _ | |a 10.1074/jbc.RA119.011902 |g Vol. 295, no. 14, p. 4383 - 4397 |0 PERI:(DE-600)1474604-9 |n 14 |p 4383-4397 |t The journal of biological chemistry |v 295 |y 2020 |x 0021-9258 |
856 | 4 | _ | |u https://www.jbc.org/content/295/14/4383.long |
909 | C | O | |o oai:pub.dzne.de:151065 |p VDB |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 8 |6 P:(DE-2719)9000986 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 12 |6 P:(DE-2719)2260426 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 14 |6 P:(DE-2719)2000035 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Gesundheit |l Erkrankungen des Nervensystems |1 G:(DE-HGF)POF3-340 |0 G:(DE-HGF)POF3-344 |2 G:(DE-HGF)POF3-300 |v Clinical and Health Care Research |x 0 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2020-01-24 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J BIOL CHEM : 2019 |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-05-04 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2021-05-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-05-04 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-05-04 |
920 | 1 | _ | |0 I:(DE-2719)6000015 |k Magdeburg Pre 2020 |l Magdeburg Pre 2020 |x 0 |
920 | 1 | _ | |0 I:(DE-2719)7000000 |k U Clinical Researchers - Magdeburg |l U Clinical Researchers - Magdeburg |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-2719)6000015 |
980 | _ | _ | |a I:(DE-2719)7000000 |
980 | _ | _ | |a UNRESTRICTED |
999 | C | 5 | |a 10.1146/annurev.ph.52.030190.002315 |9 -- missing cx lookup -- |1 Denton |p 451 - |2 Crossref |t Annu. Rev. Physiol |v 52 |y 1990 |
999 | C | 5 | |a 10.1016/j.bbabio.2010.03.024 |9 -- missing cx lookup -- |1 Carafoli |p 595 - |2 Crossref |t Biochim. Biophys. Acta |v 1797 |y 2010 |
999 | C | 5 | |a 10.1006/jmcc.2002.2082 |9 -- missing cx lookup -- |1 Balaban |p 1259 - |2 Crossref |t J. Mol. Cell Cardiol |v 34 |y 2002 |
999 | C | 5 | |a 10.1152/physrev.1990.70.2.391 |9 -- missing cx lookup -- |1 McCormack |p 391 - |2 Crossref |t Physiol. Rev |v 70 |y 1990 |
999 | C | 5 | |a 10.1016/j.bpc.2007.05.013 |9 -- missing cx lookup -- |1 Korzeniewski |p 93 - |2 Crossref |t Biophys. Chem |v 129 |y 2007 |
999 | C | 5 | |a 10.1016/j.pbiomolbio.2016.12.001 |9 -- missing cx lookup -- |1 Korzeniewski |p 1 - |2 Crossref |t Prog. Biophys. Mol. Biol |v 125 |y 2017 |
999 | C | 5 | |a 10.1111/j.1432-1033.1974.tb03318.x |9 -- missing cx lookup -- |1 Heinrich |p 89 - |2 Crossref |t Eur. J. Biochem |v 42 |y 1974 |
999 | C | 5 | |a 10.1023/A:1006875517267 |9 -- missing cx lookup -- |1 Mazat |p 143 - |2 Crossref |t Mol. Cell Biochem |v 174 |y 1997 |
999 | C | 5 | |a 10.1038/ncb2868 |9 -- missing cx lookup -- |1 Pan |p 1464 - |2 Crossref |t Nat. Cell Biol |v 15 |y 2013 |
999 | C | 5 | |a 10.1016/j.yjmcc.2015.05.022 |9 -- missing cx lookup -- |1 Holmström |p 178 - |2 Crossref |t J. Mol. Cell Cardiol |v 85 |y 2015 |
999 | C | 5 | |a 10.1016/j.celrep.2015.06.017 |9 -- missing cx lookup -- |1 Luongo |p 23 - |2 Crossref |t Cell Rep |v 12 |y 2015 |
999 | C | 5 | |a 10.1016/j.celrep.2015.06.002 |9 -- missing cx lookup -- |1 Kwong |p 15 - |2 Crossref |t Cell Rep |v 12 |y 2015 |
999 | C | 5 | |a 10.1073/pnas.1504705112 |9 -- missing cx lookup -- |1 Rasmussen |p 9129 - |2 Crossref |t Proc. Natl. Acad. Sci. U.S.A |v 112 |y 2015 |
999 | C | 5 | |a 10.1177/0271678X16682250 |9 -- missing cx lookup -- |1 Nichols |p 3027 - |2 Crossref |t J. Cereb. Blood Flow Metab |v 37 |y 2017 |
999 | C | 5 | |a 10.1038/ncomms7081 |9 -- missing cx lookup -- |1 Wu |p 6081 - |2 Crossref |t Nat. Commun |v 6 |y 2015 |
999 | C | 5 | |a 10.1074/jbc.RA118.002926 |9 -- missing cx lookup -- |1 Hamilton |p 15652 - |2 Crossref |t J. Biol. Chem |v 293 |y 2018 |
999 | C | 5 | |a 10.1126/scisignal.aav1439 |9 -- missing cx lookup -- |1 Koval |p eaav1439 - |2 Crossref |t Sci. Signal |v 12 |y 2019 |
999 | C | 5 | |1 Wang |y 2018 |2 Crossref |o Wang 2018 |
999 | C | 5 | |a 10.1042/BJ20110765 |9 -- missing cx lookup -- |1 Gellerich |p 747 - |2 Crossref |t Biochem. J |v 443 |y 2012 |
999 | C | 5 | |a 10.1002/iub.1131 |9 -- missing cx lookup -- |1 Gellerich |p 180 - |2 Crossref |t IUBMB Life |v 65 |y 2013 |
999 | C | 5 | |a 10.1016/j.bbabio.2010.02.005 |9 -- missing cx lookup -- |1 Gellerich |p 1018 - |2 Crossref |t Biochim. Biophys. Acta |v 1797 |y 2010 |
999 | C | 5 | |a 10.1074/jbc.M709555200 |9 -- missing cx lookup -- |1 Gellerich |p 30715 - |2 Crossref |t J. Biol. Chem |v 283 |y 2008 |
999 | C | 5 | |a 10.1093/emboj/20.18.5060 |9 -- missing cx lookup -- |1 Palmieri |p 5060 - |2 Crossref |t EMBO J |v 20 |y 2001 |
999 | C | 5 | |a 10.1152/physrev.00005.2006 |9 -- missing cx lookup -- |1 Satrústegui |p 29 - |2 Crossref |t Physiol. Rev |v 87 |y 2007 |
999 | C | 5 | |a 10.1074/jbc.M808066200 |9 -- missing cx lookup -- |1 Contreras |p 7091 - |2 Crossref |t J. Biol. Chem |v 284 |y 2009 |
999 | C | 5 | |a 10.1523/JNEUROSCI.0929-13.2013 |9 -- missing cx lookup -- |1 Llorente-Folch |p 13957 - |2 Crossref |t J. Neurosci |v 33 |y 2013 |
999 | C | 5 | |a 10.1016/j.bbamcr.2016.04.011 |9 -- missing cx lookup -- |1 Amoedo |p 2394 - |2 Crossref |t Biochim. Biophys. Acta |v 1863 |y 2016 |
999 | C | 5 | |a 10.1203/00006450-199508000-00015 |9 -- missing cx lookup -- |1 Scholz |p 221 - |2 Crossref |t Pediatr. Res |v 38 |y 1995 |
999 | C | 5 | |a 10.3390/ijms20184456 |9 -- missing cx lookup -- |1 Monné |p E4456 - |2 Crossref |t Int. J. Mol. Sci |v 20 |y 2019 |
999 | C | 5 | |a 10.1074/jbc.M201572200 |9 -- missing cx lookup -- |1 Fiermonte |p 19289 - |2 Crossref |t J. Biol. Chem |v 277 |y 2002 |
999 | C | 5 | |a 10.1016/0014-5793(86)80484-7 |9 -- missing cx lookup -- |1 Kauppinen |p 222 - |2 Crossref |t FEBS Lett |v 199 |y 1986 |
999 | C | 5 | |a 10.1016/0167-4889(87)90029-2 |9 -- missing cx lookup -- |1 Kauppinen |p 173 - |2 Crossref |t Biochim. Biophys. Acta |v 930 |y 1987 |
999 | C | 5 | |a 10.1152/ajpheart.00137.2008 |9 -- missing cx lookup -- |1 Tang |p H297 - |2 Crossref |t Am. J. Physiol. Heart Circ. Physiol |v 295 |y 2008 |
999 | C | 5 | |a 10.1016/S0896-6273(03)00164-8 |9 -- missing cx lookup -- |1 Ikeda |p 253 - |2 Crossref |t Neuron |v 38 |y 2003 |
999 | C | 5 | |a 10.1046/j.1460-9568.2000.00939.x |9 -- missing cx lookup -- |1 Colwell |p 571 - |2 Crossref |t Eur. J. Neurosci |v 12 |y 2000 |
999 | C | 5 | |a 10.1056/NEJMoa0900591 |9 -- missing cx lookup -- |1 Wibom |p 489 - |2 Crossref |t N. Engl. J. Med |v 361 |y 2009 |
999 | C | 5 | |a 10.1007/8904_2013_287 |9 -- missing cx lookup -- |1 Falk |p 77 - |2 Crossref |t JIMD Rep |v 14 |y 2014 |
999 | C | 5 | |a 10.1111/jnc.14047 |9 -- missing cx lookup -- |1 Juaristi |p 132 - |2 Crossref |t J. Neurochem |v 142 |y 2017 |
999 | C | 5 | |a 10.1016/j.bcp.2005.10.011 |9 -- missing cx lookup -- |1 McKenna |p 399 - |2 Crossref |t Biochem. Pharmacol |v 71 |y 2006 |
999 | C | 5 | |a 10.1016/j.abb.2011.12.021 |9 -- missing cx lookup -- |1 Abbrescia |p 157 - |2 Crossref |t Arch. Biochem. Biophys |v 518 |y 2012 |
999 | C | 5 | |a 10.1038/ng.2851 |9 -- missing cx lookup -- |1 Logan |p 188 - |2 Crossref |t Nat. Genet |v 46 |y 2014 |
999 | C | 5 | |a 10.1073/pnas.1702938114 |9 -- missing cx lookup -- |1 Tsai |p 4388 - |2 Crossref |t Proc. Natl. Acad. Sci. U.S.A |v 114 |y 2017 |
999 | C | 5 | |a 10.1016/j.molcel.2016.08.020 |9 -- missing cx lookup -- |1 König |p 148 - |2 Crossref |t Mol. Cell |v 64 |y 2016 |
999 | C | 5 | |a 10.3389/fnbeh.2015.00058 |9 -- missing cx lookup -- |1 Psotta |p 58 - |2 Crossref |t Front. Behav. Neurosci |v 9 |y 2015 |
999 | C | 5 | |a 10.1016/j.nlm.2015.02.009 |9 -- missing cx lookup -- |1 Petzold |p 52 - |2 Crossref |t Neurobiol. Learn Mem |v 120 |y 2015 |
999 | C | 5 | |a 10.1074/jbc.M310341200 |9 -- missing cx lookup -- |1 Kudin |p 4127 - |2 Crossref |t J. Biol. Chem |v 279 |y 2004 |
999 | C | 5 | |a 10.1016/S0006-291X(03)00654-5 |9 -- missing cx lookup -- |1 Gizatullina |p 643 - |2 Crossref |t Biochem. Biophys. Res. Commun |v 304 |y 2003 |
999 | C | 5 | |a 10.1016/S0021-9258(19)83641-4 |9 -- missing cx lookup -- |1 Grynkiewicz |p 3440 - |2 Crossref |t J. Biol. Chem |v 260 |y 1985 |
999 | C | 5 | |a 10.1016/S0034-5687(01)00307-3 |9 -- missing cx lookup -- |1 Gnaiger |p 277 - |2 Crossref |t Respir. Physiol |v 128 |y 2001 |
999 | C | 5 | |a 10.1007/s12035-015-9399-4 |9 -- missing cx lookup -- |1 Fröhlich |p 4728 - |2 Crossref |t Mol. Neurobiol |v 53 |y 2016 |
999 | C | 5 | |a 10.1038/jcbfm.1987.130 |9 -- missing cx lookup -- |1 Rosenthal |p 752 - |2 Crossref |t J. Cereb. Blood Flow Metab |v 7 |y 1987 |
999 | C | 5 | |a 10.1111/j.1471-4159.1990.tb04189.x |9 -- missing cx lookup -- |1 Sims |p 698 - |2 Crossref |t J. Neurochem |v 55 |y 1990 |
999 | C | 5 | |a 10.1590/S0102-86502004000700004 |9 -- missing cx lookup -- |1 Keira |p 11 - |2 Crossref |t Acta Cirurgica Brasileira |v 19 |y 2004 |
999 | C | 5 | |a 10.1007/s00395-009-0015-5 |9 -- missing cx lookup -- |1 Schwarzer |p 547 - |2 Crossref |t Basic Res. Cardiol |v 104 |y 2009 |
999 | C | 5 | |1 Doenst |y 1996 |2 Crossref |o Doenst 1996 |
999 | C | 5 | |a 10.1023/A:1006863728395 |9 -- missing cx lookup -- |1 Doenst |p 153 - |2 Crossref |t Mol. Cell Biochem |v 180 |y 1998 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|