001     151065
005     20230915093948.0
024 7 _ |a pmc:PMC7135991
|2 pmc
024 7 _ |a 10.1074/jbc.RA119.011902
|2 doi
024 7 _ |a 0006-3347
|2 ISSN
024 7 _ |a 0021-9258
|2 ISSN
024 7 _ |a 1067-8816
|2 ISSN
024 7 _ |a 1083-351X
|2 ISSN
024 7 _ |a 2516-5151
|2 ISSN
024 7 _ |a altmetric:76738764
|2 altmetric
024 7 _ |a pmid:32094224
|2 pmid
037 _ _ |a DZNE-2020-01050
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Szibor, Marten
|0 0000-0003-4029-160X
|b 0
245 _ _ |a Cytosolic, but not matrix, calcium is essential for adjustment of mitochondrial pyruvate supply
260 _ _ |a Bethesda, MD.
|c 2020
|b American Soc. for Biochemistry and Molecular Biology8772
264 _ 1 |3 online
|2 Crossref
|b American Society for Biochemistry & Molecular Biology (ASBMB)
|c 2020-02-24
264 _ 1 |3 print
|2 Crossref
|b American Society for Biochemistry & Molecular Biology (ASBMB)
|c 2020-04-03
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1600424885_22646
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Mitochondrial oxidative phosphorylation (OXPHOS) and cellular workload are tightly balanced by the key cellular regulator, calcium (Ca2+). Current models assume that cytosolic Ca2+ regulates workload and that mitochondrial Ca2+ uptake precedes activation of matrix dehydrogenases, thereby matching OXPHOS substrate supply to ATP demand. Surprisingly, knockout (KO) of the mitochondrial Ca2+ uniporter (MCU) in mice results in only minimal phenotypic changes and does not alter OXPHOS. This implies that adaptive activation of mitochondrial dehydrogenases by intramitochondrial Ca2+ cannot be the exclusive mechanism for OXPHOS control. We hypothesized that cytosolic Ca2+, but not mitochondrial matrix Ca2+, may adapt OXPHOS to workload by adjusting the rate of pyruvate supply from the cytosol to the mitochondria. Here, we studied the role of malate-aspartate shuttle (MAS)-dependent substrate supply in OXPHOS responses to changing Ca2+ concentrations in isolated brain and heart mitochondria, synaptosomes, fibroblasts, and thymocytes from WT and MCU KO mice and the isolated working rat heart. Our results indicate that extramitochondrial Ca2+ controls up to 85% of maximal pyruvate-driven OXPHOS rates, mediated by the activity of the complete MAS, and that intramitochondrial Ca2+ accounts for the remaining 15%. Of note, the complete MAS, as applied here, included besides its classical NADH oxidation reaction the generation of cytosolic pyruvate. Part of this largely neglected mechanism has previously been described as the “mitochondrial gas pedal.” Its implementation into OXPHOS control models integrates seemingly contradictory results and warrants a critical reappraisal of metabolic control mechanisms in health and disease.
536 _ _ |a 344 - Clinical and Health Care Research (POF3-344)
|0 G:(DE-HGF)POF3-344
|c POF3-344
|f POF III
|x 0
542 _ _ |i 2020-04-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
542 _ _ |i 2020-11-13
|2 Crossref
|u http://creativecommons.org/licenses/by/4.0/
588 _ _ |a Dataset connected to CrossRef
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Aspartic Acid: metabolism
|2 MeSH
650 _ 2 |a Brain: metabolism
|2 MeSH
650 _ 2 |a Calcium: metabolism
|2 MeSH
650 _ 2 |a Calcium Channels: deficiency
|2 MeSH
650 _ 2 |a Calcium Channels: genetics
|2 MeSH
650 _ 2 |a Cytosol: metabolism
|2 MeSH
650 _ 2 |a Glutamic Acid: chemistry
|2 MeSH
650 _ 2 |a Glutamic Acid: metabolism
|2 MeSH
650 _ 2 |a Heart: physiology
|2 MeSH
650 _ 2 |a Malates: chemistry
|2 MeSH
650 _ 2 |a Malates: metabolism
|2 MeSH
650 _ 2 |a Membrane Potential, Mitochondrial
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Mice, Inbred C57BL
|2 MeSH
650 _ 2 |a Mice, Knockout
|2 MeSH
650 _ 2 |a Mitochondria: metabolism
|2 MeSH
650 _ 2 |a Myocardium: metabolism
|2 MeSH
650 _ 2 |a Oxidative Phosphorylation
|2 MeSH
650 _ 2 |a Pyruvic Acid: metabolism
|2 MeSH
650 _ 2 |a Rats
|2 MeSH
650 _ 2 |a Substrate Specificity
|2 MeSH
650 _ 2 |a Synaptosomes: metabolism
|2 MeSH
700 1 _ |a Gizatullina, Zemfira
|b 1
700 1 _ |a Gainutdinov, Timur
|0 0000-0003-1723-1780
|b 2
700 1 _ |a Endres, Thomas
|0 0000-0003-4263-2922
|b 3
700 1 _ |a Debska-Vielhaber, Grazyna
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kunz, Matthias
|b 5
700 1 _ |a Karavasili, Niki
|b 6
700 1 _ |a Hallmann, Kerstin
|b 7
700 1 _ |a Schreiber, Frank
|0 P:(DE-2719)9000986
|b 8
|u dzne
700 1 _ |a Bamberger, Alexandra
|b 9
700 1 _ |a Schwarzer, Michael
|0 0000-0001-9698-4830
|b 10
700 1 _ |a Doenst, Torsten
|b 11
700 1 _ |a Heinze, Hans-Jochen
|0 P:(DE-2719)2260426
|b 12
|u dzne
700 1 _ |a Lessmann, Volkmar
|b 13
700 1 _ |a Vielhaber, Stefan
|0 P:(DE-2719)2000035
|b 14
|u dzne
700 1 _ |a Kunz, Wolfram S.
|0 0000-0003-1113-3493
|b 15
700 1 _ |a Gellerich, Frank N.
|0 0000-0002-6550-4555
|b 16
773 1 8 |a 10.1074/jbc.ra119.011902
|b Elsevier BV
|d 2020-04-01
|n 14
|p 4383-4397
|3 journal-article
|2 Crossref
|t Journal of Biological Chemistry
|v 295
|y 2020
|x 0021-9258
773 _ _ |a 10.1074/jbc.RA119.011902
|g Vol. 295, no. 14, p. 4383 - 4397
|0 PERI:(DE-600)1474604-9
|n 14
|p 4383-4397
|t The journal of biological chemistry
|v 295
|y 2020
|x 0021-9258
856 4 _ |u https://www.jbc.org/content/295/14/4383.long
909 C O |o oai:pub.dzne.de:151065
|p VDB
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)9000986
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 12
|6 P:(DE-2719)2260426
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 14
|6 P:(DE-2719)2000035
913 1 _ |a DE-HGF
|b Forschungsbereich Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-344
|2 G:(DE-HGF)POF3-300
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J BIOL CHEM : 2019
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-05-04
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-05-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-05-04
920 1 _ |0 I:(DE-2719)6000015
|k Magdeburg Pre 2020
|l Magdeburg Pre 2020
|x 0
920 1 _ |0 I:(DE-2719)7000000
|k U Clinical Researchers - Magdeburg
|l U Clinical Researchers - Magdeburg
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)6000015
980 _ _ |a I:(DE-2719)7000000
980 _ _ |a UNRESTRICTED
999 C 5 |a 10.1146/annurev.ph.52.030190.002315
|9 -- missing cx lookup --
|1 Denton
|p 451 -
|2 Crossref
|t Annu. Rev. Physiol
|v 52
|y 1990
999 C 5 |a 10.1016/j.bbabio.2010.03.024
|9 -- missing cx lookup --
|1 Carafoli
|p 595 -
|2 Crossref
|t Biochim. Biophys. Acta
|v 1797
|y 2010
999 C 5 |a 10.1006/jmcc.2002.2082
|9 -- missing cx lookup --
|1 Balaban
|p 1259 -
|2 Crossref
|t J. Mol. Cell Cardiol
|v 34
|y 2002
999 C 5 |a 10.1152/physrev.1990.70.2.391
|9 -- missing cx lookup --
|1 McCormack
|p 391 -
|2 Crossref
|t Physiol. Rev
|v 70
|y 1990
999 C 5 |a 10.1016/j.bpc.2007.05.013
|9 -- missing cx lookup --
|1 Korzeniewski
|p 93 -
|2 Crossref
|t Biophys. Chem
|v 129
|y 2007
999 C 5 |a 10.1016/j.pbiomolbio.2016.12.001
|9 -- missing cx lookup --
|1 Korzeniewski
|p 1 -
|2 Crossref
|t Prog. Biophys. Mol. Biol
|v 125
|y 2017
999 C 5 |a 10.1111/j.1432-1033.1974.tb03318.x
|9 -- missing cx lookup --
|1 Heinrich
|p 89 -
|2 Crossref
|t Eur. J. Biochem
|v 42
|y 1974
999 C 5 |a 10.1023/A:1006875517267
|9 -- missing cx lookup --
|1 Mazat
|p 143 -
|2 Crossref
|t Mol. Cell Biochem
|v 174
|y 1997
999 C 5 |a 10.1038/ncb2868
|9 -- missing cx lookup --
|1 Pan
|p 1464 -
|2 Crossref
|t Nat. Cell Biol
|v 15
|y 2013
999 C 5 |a 10.1016/j.yjmcc.2015.05.022
|9 -- missing cx lookup --
|1 Holmström
|p 178 -
|2 Crossref
|t J. Mol. Cell Cardiol
|v 85
|y 2015
999 C 5 |a 10.1016/j.celrep.2015.06.017
|9 -- missing cx lookup --
|1 Luongo
|p 23 -
|2 Crossref
|t Cell Rep
|v 12
|y 2015
999 C 5 |a 10.1016/j.celrep.2015.06.002
|9 -- missing cx lookup --
|1 Kwong
|p 15 -
|2 Crossref
|t Cell Rep
|v 12
|y 2015
999 C 5 |a 10.1073/pnas.1504705112
|9 -- missing cx lookup --
|1 Rasmussen
|p 9129 -
|2 Crossref
|t Proc. Natl. Acad. Sci. U.S.A
|v 112
|y 2015
999 C 5 |a 10.1177/0271678X16682250
|9 -- missing cx lookup --
|1 Nichols
|p 3027 -
|2 Crossref
|t J. Cereb. Blood Flow Metab
|v 37
|y 2017
999 C 5 |a 10.1038/ncomms7081
|9 -- missing cx lookup --
|1 Wu
|p 6081 -
|2 Crossref
|t Nat. Commun
|v 6
|y 2015
999 C 5 |a 10.1074/jbc.RA118.002926
|9 -- missing cx lookup --
|1 Hamilton
|p 15652 -
|2 Crossref
|t J. Biol. Chem
|v 293
|y 2018
999 C 5 |a 10.1126/scisignal.aav1439
|9 -- missing cx lookup --
|1 Koval
|p eaav1439 -
|2 Crossref
|t Sci. Signal
|v 12
|y 2019
999 C 5 |1 Wang
|y 2018
|2 Crossref
|o Wang 2018
999 C 5 |a 10.1042/BJ20110765
|9 -- missing cx lookup --
|1 Gellerich
|p 747 -
|2 Crossref
|t Biochem. J
|v 443
|y 2012
999 C 5 |a 10.1002/iub.1131
|9 -- missing cx lookup --
|1 Gellerich
|p 180 -
|2 Crossref
|t IUBMB Life
|v 65
|y 2013
999 C 5 |a 10.1016/j.bbabio.2010.02.005
|9 -- missing cx lookup --
|1 Gellerich
|p 1018 -
|2 Crossref
|t Biochim. Biophys. Acta
|v 1797
|y 2010
999 C 5 |a 10.1074/jbc.M709555200
|9 -- missing cx lookup --
|1 Gellerich
|p 30715 -
|2 Crossref
|t J. Biol. Chem
|v 283
|y 2008
999 C 5 |a 10.1093/emboj/20.18.5060
|9 -- missing cx lookup --
|1 Palmieri
|p 5060 -
|2 Crossref
|t EMBO J
|v 20
|y 2001
999 C 5 |a 10.1152/physrev.00005.2006
|9 -- missing cx lookup --
|1 Satrústegui
|p 29 -
|2 Crossref
|t Physiol. Rev
|v 87
|y 2007
999 C 5 |a 10.1074/jbc.M808066200
|9 -- missing cx lookup --
|1 Contreras
|p 7091 -
|2 Crossref
|t J. Biol. Chem
|v 284
|y 2009
999 C 5 |a 10.1523/JNEUROSCI.0929-13.2013
|9 -- missing cx lookup --
|1 Llorente-Folch
|p 13957 -
|2 Crossref
|t J. Neurosci
|v 33
|y 2013
999 C 5 |a 10.1016/j.bbamcr.2016.04.011
|9 -- missing cx lookup --
|1 Amoedo
|p 2394 -
|2 Crossref
|t Biochim. Biophys. Acta
|v 1863
|y 2016
999 C 5 |a 10.1203/00006450-199508000-00015
|9 -- missing cx lookup --
|1 Scholz
|p 221 -
|2 Crossref
|t Pediatr. Res
|v 38
|y 1995
999 C 5 |a 10.3390/ijms20184456
|9 -- missing cx lookup --
|1 Monné
|p E4456 -
|2 Crossref
|t Int. J. Mol. Sci
|v 20
|y 2019
999 C 5 |a 10.1074/jbc.M201572200
|9 -- missing cx lookup --
|1 Fiermonte
|p 19289 -
|2 Crossref
|t J. Biol. Chem
|v 277
|y 2002
999 C 5 |a 10.1016/0014-5793(86)80484-7
|9 -- missing cx lookup --
|1 Kauppinen
|p 222 -
|2 Crossref
|t FEBS Lett
|v 199
|y 1986
999 C 5 |a 10.1016/0167-4889(87)90029-2
|9 -- missing cx lookup --
|1 Kauppinen
|p 173 -
|2 Crossref
|t Biochim. Biophys. Acta
|v 930
|y 1987
999 C 5 |a 10.1152/ajpheart.00137.2008
|9 -- missing cx lookup --
|1 Tang
|p H297 -
|2 Crossref
|t Am. J. Physiol. Heart Circ. Physiol
|v 295
|y 2008
999 C 5 |a 10.1016/S0896-6273(03)00164-8
|9 -- missing cx lookup --
|1 Ikeda
|p 253 -
|2 Crossref
|t Neuron
|v 38
|y 2003
999 C 5 |a 10.1046/j.1460-9568.2000.00939.x
|9 -- missing cx lookup --
|1 Colwell
|p 571 -
|2 Crossref
|t Eur. J. Neurosci
|v 12
|y 2000
999 C 5 |a 10.1056/NEJMoa0900591
|9 -- missing cx lookup --
|1 Wibom
|p 489 -
|2 Crossref
|t N. Engl. J. Med
|v 361
|y 2009
999 C 5 |a 10.1007/8904_2013_287
|9 -- missing cx lookup --
|1 Falk
|p 77 -
|2 Crossref
|t JIMD Rep
|v 14
|y 2014
999 C 5 |a 10.1111/jnc.14047
|9 -- missing cx lookup --
|1 Juaristi
|p 132 -
|2 Crossref
|t J. Neurochem
|v 142
|y 2017
999 C 5 |a 10.1016/j.bcp.2005.10.011
|9 -- missing cx lookup --
|1 McKenna
|p 399 -
|2 Crossref
|t Biochem. Pharmacol
|v 71
|y 2006
999 C 5 |a 10.1016/j.abb.2011.12.021
|9 -- missing cx lookup --
|1 Abbrescia
|p 157 -
|2 Crossref
|t Arch. Biochem. Biophys
|v 518
|y 2012
999 C 5 |a 10.1038/ng.2851
|9 -- missing cx lookup --
|1 Logan
|p 188 -
|2 Crossref
|t Nat. Genet
|v 46
|y 2014
999 C 5 |a 10.1073/pnas.1702938114
|9 -- missing cx lookup --
|1 Tsai
|p 4388 -
|2 Crossref
|t Proc. Natl. Acad. Sci. U.S.A
|v 114
|y 2017
999 C 5 |a 10.1016/j.molcel.2016.08.020
|9 -- missing cx lookup --
|1 König
|p 148 -
|2 Crossref
|t Mol. Cell
|v 64
|y 2016
999 C 5 |a 10.3389/fnbeh.2015.00058
|9 -- missing cx lookup --
|1 Psotta
|p 58 -
|2 Crossref
|t Front. Behav. Neurosci
|v 9
|y 2015
999 C 5 |a 10.1016/j.nlm.2015.02.009
|9 -- missing cx lookup --
|1 Petzold
|p 52 -
|2 Crossref
|t Neurobiol. Learn Mem
|v 120
|y 2015
999 C 5 |a 10.1074/jbc.M310341200
|9 -- missing cx lookup --
|1 Kudin
|p 4127 -
|2 Crossref
|t J. Biol. Chem
|v 279
|y 2004
999 C 5 |a 10.1016/S0006-291X(03)00654-5
|9 -- missing cx lookup --
|1 Gizatullina
|p 643 -
|2 Crossref
|t Biochem. Biophys. Res. Commun
|v 304
|y 2003
999 C 5 |a 10.1016/S0021-9258(19)83641-4
|9 -- missing cx lookup --
|1 Grynkiewicz
|p 3440 -
|2 Crossref
|t J. Biol. Chem
|v 260
|y 1985
999 C 5 |a 10.1016/S0034-5687(01)00307-3
|9 -- missing cx lookup --
|1 Gnaiger
|p 277 -
|2 Crossref
|t Respir. Physiol
|v 128
|y 2001
999 C 5 |a 10.1007/s12035-015-9399-4
|9 -- missing cx lookup --
|1 Fröhlich
|p 4728 -
|2 Crossref
|t Mol. Neurobiol
|v 53
|y 2016
999 C 5 |a 10.1038/jcbfm.1987.130
|9 -- missing cx lookup --
|1 Rosenthal
|p 752 -
|2 Crossref
|t J. Cereb. Blood Flow Metab
|v 7
|y 1987
999 C 5 |a 10.1111/j.1471-4159.1990.tb04189.x
|9 -- missing cx lookup --
|1 Sims
|p 698 -
|2 Crossref
|t J. Neurochem
|v 55
|y 1990
999 C 5 |a 10.1590/S0102-86502004000700004
|9 -- missing cx lookup --
|1 Keira
|p 11 -
|2 Crossref
|t Acta Cirurgica Brasileira
|v 19
|y 2004
999 C 5 |a 10.1007/s00395-009-0015-5
|9 -- missing cx lookup --
|1 Schwarzer
|p 547 -
|2 Crossref
|t Basic Res. Cardiol
|v 104
|y 2009
999 C 5 |1 Doenst
|y 1996
|2 Crossref
|o Doenst 1996
999 C 5 |a 10.1023/A:1006863728395
|9 -- missing cx lookup --
|1 Doenst
|p 153 -
|2 Crossref
|t Mol. Cell Biochem
|v 180
|y 1998


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21