001     151598
005     20230915094003.0
024 7 _ |a 10.1016/j.ijbiomac.2020.03.238
|2 doi
024 7 _ |a 0141-8130
|2 ISSN
024 7 _ |a 1879-0003
|2 ISSN
024 7 _ |a altmetric:78957872
|2 altmetric
024 7 _ |a pmid:32240735
|2 pmid
037 _ _ |a DZNE-2020-01182
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Tayaranian Marvian, Amir
|0 P:(DE-2719)9000203
|b 0
|e First author
|u dzne
245 _ _ |a The status of the terminal regions of α-synuclein in different forms of aggregates during fibrillization
260 _ _ |a New York, NY [u.a.]
|c 2020
|b Elsevier
264 _ 1 |3 print
|2 Crossref
|b Elsevier BV
|c 2020-07-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1685012533_32152
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The α-synuclein (αSN) amyloid fibrillization process is known to be a crucial phenomenon associated with neuronal loss in various neurodegenerative diseases, most famously Parkinson's disease. The process involves different aggregated species and ultimately leads to formation of β-sheet rich fibrillar structures. Despite the essential role of αSN aggregation in the pathoetiology of various neurological disorders, the characteristics of various assemblies are not fully understood. Here, we established a fluorescence-based model for studying the end-parts of αSN to decipher the structural aspects of aggregates during the fibrillization. Our model proved highly sensitive to the events at the early stage of the fibrillization process, which are hardly detectable with routine techniques. Combining fluorescent and PAGE analysis, we found different oligomeric aggregates in the nucleation phase of fibrillization with different sensitivity to SDS and different structures based on αSN termini. Moreover, we found that these oligomers are highly dynamic: after reaching peak levels during fibrillization, they decline and eventually disappear, suggesting their transformation into other αSN aggregated species. These findings shed light on the structural features of various αSN aggregates and their dynamics in synucleinopathies.
536 _ _ |a 344 - Clinical and Health Care Research (POF3-344)
|0 G:(DE-HGF)POF3-344
|c POF3-344
|f POF III
|x 0
542 _ _ |i 2020-07-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
542 _ _ |i 2020-04-11
|2 Crossref
|u http://creativecommons.org/licenses/by/4.0/
588 _ _ |a Dataset connected to CrossRef
650 _ 2 |a Amyloid: chemistry
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Mutant Proteins: chemistry
|2 MeSH
650 _ 2 |a Mutant Proteins: genetics
|2 MeSH
650 _ 2 |a Mutant Proteins: metabolism
|2 MeSH
650 _ 2 |a Mutation
|2 MeSH
650 _ 2 |a Protein Interaction Domains and Motifs
|2 MeSH
650 _ 2 |a Protein Multimerization
|2 MeSH
650 _ 2 |a alpha-Synuclein: chemistry
|2 MeSH
650 _ 2 |a alpha-Synuclein: genetics
|2 MeSH
650 _ 2 |a alpha-Synuclein: metabolism
|2 MeSH
700 1 _ |a Aliakbari, Farhang
|b 1
700 1 _ |a Mohammad-Beigi, Hossein
|b 2
700 1 _ |a Ahmadi, Zeinab Alsadat
|b 3
700 1 _ |a Mehrpooyan, Sina
|b 4
700 1 _ |a Lermyte, Frederik
|b 5
700 1 _ |a Nasouti, Mahour
|b 6
700 1 _ |a Collingwood, Joanna F.
|b 7
700 1 _ |a Otzen, Daniel E.
|b 8
700 1 _ |a Morshedi, Dina
|0 P:(DE-HGF)0
|b 9
|e Corresponding author
773 1 8 |a 10.1016/j.ijbiomac.2020.03.238
|b : Elsevier BV, 2020-07-01
|p 543-550
|3 journal-article
|2 Crossref
|t International Journal of Biological Macromolecules
|v 155
|y 2020
|x 0141-8130
773 _ _ |a 10.1016/j.ijbiomac.2020.03.238
|g Vol. 155, p. 543 - 550
|0 PERI:(DE-600)1483284-7
|p 543-550
|t International journal of biological macromolecules
|v 155
|y 2020
|x 0141-8130
856 4 _ |u https://www.sciencedirect.com/science/article/pii/S0141813020328257
856 4 _ |u https://pub.dzne.de/record/151598/files/DZNE-2020-01182.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/151598/files/DZNE-2020-01182.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:151598
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9000203
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-344
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-15
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-25
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J BIOL MACROMOL : 2021
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b INT J BIOL MACROMOL : 2021
|d 2022-11-25
920 1 _ |0 I:(DE-2719)1110002
|k AG Höglinger 1 ; AG Höglinger 1
|l Translational Neurodegeneration
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1110002
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21