001     151616
005     20240321221037.0
024 7 _ |a 10.1089/cmb.2019.0320
|2 doi
024 7 _ |a pmid:31855058
|2 pmid
024 7 _ |a pmc:PMC7047095
|2 pmc
024 7 _ |a 1066-5277
|2 ISSN
024 7 _ |a 1557-8666
|2 ISSN
037 _ _ |a DZNE-2020-01198
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Fiosina, Jelena
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Explainable Deep Learning for Augmentation of Small RNA Expression Profiles.342
260 _ _ |a Larchmont, NY
|c 2019
|b Liebert
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1601292570_15840
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The lack of well-structured metadata annotations complicates the reusability and interpretation of the growing amount of publicly available RNA expression data. The machine learning-based prediction of metadata (data augmentation) can considerably improve the quality of expression data annotation. In this study, we systematically benchmark deep learning (DL) and random forest (RF)-based metadata augmentation of tissue, age, and sex using small RNA (sRNA) expression profiles. We use 4243 annotated sRNA-Seq samples from the sRNA expression atlas database to train and test the augmentation performance. In general, the DL machine learner outperforms the RF method in almost all tested cases. The average cross-validated prediction accuracy of the DL algorithm for tissues is 96.5%, for sex is 77%, and for age is 77.2%. The average tissue prediction accuracy for a completely new data set is 83.1% (DL) and 80.8% (RF). To understand which sRNAs influence DL predictions, we employ backpropagation-based feature importance scores using the DeepLIFT method, which enable us to obtain information on biological relevance of sRNAs.
536 _ _ |a 342 - Disease Mechanisms and Model Systems (POF3-342)
|0 G:(DE-HGF)POF3-342
|c POF3-342
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Fiosins, Maksims
|0 P:(DE-2719)2811935
|b 1
|e Corresponding author
|u dzne
700 1 _ |a Bonn, Stefan
|0 P:(DE-2719)2810547
|b 2
|e Last author
|u dzne
773 _ _ |a 10.1089/cmb.2019.0320
|g Vol. 27, no. 2, p. 234 - 247
|0 PERI:(DE-600)2030900-4
|n 2
|p 234 - 247
|t Journal of computational biology
|v 27
|y 2019
|x 1557-8666
909 C O |o oai:pub.dzne.de:151616
|p VDB
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2811935
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2810547
913 1 _ |a DE-HGF
|b Forschungsbereich Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-342
|2 G:(DE-HGF)POF3-300
|v Disease Mechanisms and Model Systems
|x 0
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2019-12-20
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-03-30
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J COMPUT BIOL : 2021
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-03-30
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-03-30
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-03-30
920 1 _ |0 I:(DE-2719)1410003
|k AG Bonn 1
|l Computational analysis of biological networks
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1410003
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21