001     151660
005     20250415100045.0
024 7 _ |a pmc:PMC7383914
|2 pmc
024 7 _ |a 10.1002/ana.25723
|2 doi
024 7 _ |a 0364-5134
|2 ISSN
024 7 _ |a 1531-8249
|2 ISSN
024 7 _ |a altmetric:78458360
|2 altmetric
024 7 _ |a pmid:32219868
|2 pmid
037 _ _ |a DZNE-2020-01239
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Caporali, Leonardo
|0 0000-0002-0666-4380
|b 0
245 _ _ |a ATPase Domain AFG3L2 Mutations Alter OPA1 Processing and Cause Optic Neuropathy
260 _ _ |a Hoboken, NJ
|c 2020
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1744700772_4060
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a ObjectiveDominant optic atrophy (DOA) is the most common inherited optic neuropathy, with a prevalence of 1:12,000 to 1:25,000. OPA1 mutations are found in 70% of DOA patients, with a significant number remaining undiagnosed.MethodsWe screened 286 index cases presenting optic atrophy, negative for OPA1 mutations, by targeted next generation sequencing or whole exome sequencing. Pathogenicity and molecular mechanisms of the identified variants were studied in yeast and patient‐derived fibroblasts.ResultsTwelve cases (4%) were found to carry novel variants in AFG3L2, a gene that has been associated with autosomal dominant spinocerebellar ataxia 28 (SCA28). Half of cases were familial with a dominant inheritance, whereas the others were sporadic, including de novo mutations. Biallelic mutations were found in 3 probands with severe syndromic optic neuropathy, acting as recessive or phenotype‐modifier variants. All the DOA‐associated AFG3L2 mutations were clustered in the ATPase domain, whereas SCA28‐associated mutations mostly affect the proteolytic domain. The pathogenic role of DOA‐associated AFG3L2 mutations was confirmed in yeast, unraveling a mechanism distinct from that of SCA28‐associated AFG3L2 mutations. Patients' fibroblasts showed abnormal OPA1 processing, with accumulation of the fission‐inducing short forms leading to mitochondrial network fragmentation, not observed in SCA28 patients' cells.InterpretationThis study demonstrates that mutations in AFG3L2 are a relevant cause of optic neuropathy, broadening the spectrum of clinical manifestations and genetic mechanisms associated with AFG3L2 mutations, and underscores the pivotal role of OPA1 and its processing in the pathogenesis of DOA. ANN NEUROL 2020 ANN NEUROL 2020;88:18–32
536 _ _ |a 344 - Clinical and Health Care Research (POF3-344)
|0 G:(DE-HGF)POF3-344
|c POF3-344
|f POF III
|x 0
536 _ _ |a 345 - Population Studies and Genetics (POF3-345)
|0 G:(DE-HGF)POF3-345
|c POF3-345
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
650 _ 2 |a ATP-Dependent Proteases: genetics
|2 MeSH
650 _ 2 |a ATPases Associated with Diverse Cellular Activities: genetics
|2 MeSH
650 _ 2 |a Adolescent
|2 MeSH
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a Aged
|2 MeSH
650 _ 2 |a Child
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a GTP Phosphohydrolases: genetics
|2 MeSH
650 _ 2 |a Genetic Testing
|2 MeSH
650 _ 2 |a High-Throughput Nucleotide Sequencing
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Mutation
|2 MeSH
650 _ 2 |a Optic Atrophy: genetics
|2 MeSH
650 _ 2 |a Optic Nerve Diseases: genetics
|2 MeSH
650 _ 2 |a Pedigree
|2 MeSH
650 _ 2 |a Exome Sequencing
|2 MeSH
650 _ 2 |a Young Adult
|2 MeSH
700 1 _ |a Magri, Stefania
|b 1
700 1 _ |a Legati, Andrea
|b 2
700 1 _ |a Del Dotto, Valentina
|b 3
700 1 _ |a Tagliavini, Francesca
|b 4
700 1 _ |a Balistreri, Francesca
|b 5
700 1 _ |a Nasca, Alessia
|b 6
700 1 _ |a La Morgia, Chiara
|b 7
700 1 _ |a Carbonelli, Michele
|b 8
700 1 _ |a Valentino, Maria L.
|b 9
700 1 _ |a Lamantea, Eleonora
|b 10
700 1 _ |a Baratta, Silvia
|b 11
700 1 _ |a Schöls, Ludger
|0 P:(DE-2719)2810795
|b 12
|u dzne
700 1 _ |a Schüle, Rebecca
|0 P:(DE-2719)2812018
|b 13
|u dzne
700 1 _ |a Barboni, Piero
|b 14
700 1 _ |a Cascavilla, Maria L.
|b 15
700 1 _ |a Maresca, Alessandra
|b 16
700 1 _ |a Capristo, Mariantonietta
|b 17
700 1 _ |a Ardissone, Anna
|b 18
700 1 _ |a Pareyson, Davide
|0 0000-0001-6854-765X
|b 19
700 1 _ |a Cammarata, Gabriella
|b 20
700 1 _ |a Melzi, Lisa
|b 21
700 1 _ |a Zeviani, Massimo
|b 22
700 1 _ |a Peverelli, Lorenzo
|b 23
700 1 _ |a Lamperti, Costanza
|b 24
700 1 _ |a Marzoli, Stefania B.
|b 25
700 1 _ |a Fang, Mingyan
|0 0000-0001-7185-6445
|b 26
700 1 _ |a Synofzik, Matthis
|0 P:(DE-2719)2811275
|b 27
|u dzne
700 1 _ |a Ghezzi, Daniele
|0 0000-0002-6564-3766
|b 28
700 1 _ |a Carelli, Valerio
|b 29
700 1 _ |a Taroni, Franco
|0 0000-0002-2420-5233
|b 30
773 _ _ |a 10.1002/ana.25723
|g Vol. 88, no. 1, p. 18 - 32
|0 PERI:(DE-600)2037912-2
|n 1
|p 18 - 32
|t Annals of neurology
|v 88
|y 2020
|x 1531-8249
856 4 _ |u https://onlinelibrary.wiley.com/doi/full/10.1002/ana.25723
856 4 _ |u https://pub.dzne.de/record/151660/files/DZNE-2020-01239.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/151660/files/DZNE-2020-01239.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:151660
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 12
|6 P:(DE-2719)2810795
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 13
|6 P:(DE-2719)2812018
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 27
|6 P:(DE-2719)2811275
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-344
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-345
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Population Studies and Genetics
|x 1
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-30
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ANN NEUROL : 2021
|d 2022-11-30
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ANN NEUROL : 2021
|d 2022-11-30
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-02-26
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-30
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-30
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-30
920 1 _ |0 I:(DE-2719)1210000
|k AG Gasser
|l Parkinson Genetics
|x 0
920 1 _ |0 I:(DE-2719)5000024
|k AG Maetzler
|l Functional Neurogeriatrics
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1210000
980 _ _ |a I:(DE-2719)5000024
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21