001     151661
005     20240223115101.0
024 7 _ |a pmc:PMC8729885
|2 pmc
024 7 _ |a 10.1016/j.celrep.2020.02.025
|2 doi
024 7 _ |a 2211-1247
|2 ISSN
024 7 _ |a 2639-1856
|2 ISSN
024 7 _ |a altmetric:77694947
|2 altmetric
024 7 _ |a pmid:32187546
|2 pmid
037 _ _ |a DZNE-2020-01240
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Friker, Lea L.
|b 0
245 _ _ |a β-Amyloid Clustering around ASC Fibrils Boosts Its Toxicity in Microglia
260 _ _ |a [New York, NY]
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1708613875_31171
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Alzheimer’s disease is the world’s most common neurodegenerative disorder. It is associated with neuroinflammation involving activation of microglia by β-amyloid (Aβ) deposits. Based on previous studies showing apoptosis-associated speck-like protein containing a CARD (ASC) binding and cross-seeding extracellular Aβ, we investigate the propagation of ASC between primary microglia and the effects of ASC-Aβ composites on microglial inflammasomes and function. Indeed, ASC released by a pyroptotic cell can be functionally built into the neighboring microglia NOD-like receptor protein (NLRP3) inflammasome. Compared with protein-only application, exposure to ASC-Aβ composites amplifies the proinflammatory response, resulting in pyroptotic cell death, setting free functional ASC and inducing a feedforward stimulating vicious cycle. Clustering around ASC fibrils also compromises clearance of Aβ by microglia. Together, these data enable a closer look at the turning point from acute to chronic Aβ-related neuroinflammation through formation of ASC-Aβ composites.
536 _ _ |a 344 - Clinical and Health Care Research (POF3-344)
|0 G:(DE-HGF)POF3-344
|c POF3-344
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
650 _ 2 |a Amyloid beta-Peptides: metabolism
|2 MeSH
650 _ 2 |a Amyloid beta-Peptides: toxicity
|2 MeSH
650 _ 2 |a Amyloid beta-Peptides: ultrastructure
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a CARD Signaling Adaptor Proteins: metabolism
|2 MeSH
650 _ 2 |a Caspase 1: metabolism
|2 MeSH
650 _ 2 |a Cells, Cultured
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Inflammasomes: metabolism
|2 MeSH
650 _ 2 |a Interleukin-1beta: metabolism
|2 MeSH
650 _ 2 |a Mice, Inbred C57BL
|2 MeSH
650 _ 2 |a Microglia: drug effects
|2 MeSH
650 _ 2 |a Microglia: metabolism
|2 MeSH
650 _ 2 |a Microglia: pathology
|2 MeSH
650 _ 2 |a Models, Biological
|2 MeSH
650 _ 2 |a NLR Family, Pyrin Domain-Containing 3 Protein: metabolism
|2 MeSH
650 _ 2 |a Proteolysis: drug effects
|2 MeSH
650 _ 2 |a Pyroptosis: drug effects
|2 MeSH
650 _ 2 |a Signal Transduction: drug effects
|2 MeSH
650 _ 2 |a Toll-Like Receptor 2: metabolism
|2 MeSH
650 _ 2 |a Toll-Like Receptor 4: metabolism
|2 MeSH
700 1 _ |a Scheiblich, Hannah
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hochheiser, Inga V.
|b 2
700 1 _ |a Brinkschulte, Rebecca
|b 3
700 1 _ |a Riedel, Dietmar
|b 4
700 1 _ |a Latz, Eicke
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Geyer, Matthias
|b 6
700 1 _ |a Heneka, Michael T.
|0 P:(DE-2719)2000008
|b 7
|e Last author
|u dzne
773 _ _ |a 10.1016/j.celrep.2020.02.025
|g Vol. 30, no. 11, p. 3743 - 3754.e6
|0 PERI:(DE-600)2649101-1
|n 11
|p 3743 - 3754.e6
|t Cell reports
|v 30
|y 2020
|x 2211-1247
856 4 _ |u https://www.sciencedirect.com/science/article/pii/S2211124720301868
856 4 _ |u https://pub.dzne.de/record/151661/files/DZNE-2020-01240.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/151661/files/DZNE-2020-01240.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:151661
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)2000008
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-344
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-17
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL REP : 2021
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-26T13:08:57Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-26T13:08:57Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-17
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-01-26T13:08:57Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2020-01-17
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CELL REP : 2021
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-17
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-01-17
920 1 _ |0 I:(DE-2719)1011303
|k AG Heneka ; AG Heneka
|l Neuroinflammation, Biomarker
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1011303
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21