001     153282
005     20240420115847.0
024 7 _ |a pmid:32832661
|2 pmid
024 7 _ |a 10.1126/sciadv.aba2619
|2 doi
024 7 _ |a altmetric:86258416
|2 altmetric
024 7 _ |a pmc:PMC7439569
|2 pmc
037 _ _ |a DZNE-2020-01279
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Menden, Kevin
|0 P:(DE-2719)2812499
|b 0
|e First author
|u dzne
245 _ _ |a Deep learning–based cell composition analysis from tissue expression profiles
260 _ _ |a Washington, DC [u.a.]
|c 2020
|b Assoc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1713534655_11035
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We present Scaden, a deep neural network for cell deconvolution that uses gene expression information to infer the cellular composition of tissues. Scaden is trained on single-cell RNA sequencing (RNA-seq) data to engineer discriminative features that confer robustness to bias and noise, making complex data preprocessing and feature selection unnecessary. We demonstrate that Scaden outperforms existing deconvolution algorithms in both precision and robustness. A single trained network reliably deconvolves bulk RNA-seq and microarray, human and mouse tissue expression data and leverages the combined information of multiple datasets. Because of this stability and flexibility, we surmise that deep learning will become an algorithmic mainstay for cell deconvolution of various data types. Scaden’s software package and web application are easy to use on new as well as diverse existing expression datasets available in public resources, deepening the molecular and cellular understanding of developmental and disease processes.
536 _ _ |a 342 - Disease Mechanisms and Model Systems (POF3-342)
|0 G:(DE-HGF)POF3-342
|c POF3-342
|f POF III
|x 0
536 _ _ |a 345 - Population Studies and Genetics (POF3-345)
|0 G:(DE-HGF)POF3-345
|c POF3-345
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Marouf, Mohamed
|0 0000-0002-3877-7793
|b 1
700 1 _ |a Oller, Sergio
|0 0000-0002-8994-1549
|b 2
700 1 _ |a Dalmia, Anupriya
|0 P:(DE-2719)2812478
|b 3
|u dzne
700 1 _ |a Magruder, Daniel Sumner
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kloiber, Karin
|b 5
700 1 _ |a Heutink, Peter
|0 P:(DE-2719)2810728
|b 6
|u dzne
700 1 _ |a Bonn, Stefan
|0 P:(DE-2719)2810547
|b 7
|e Last author
|u dzne
773 _ _ |a 10.1126/sciadv.aba2619
|g Vol. 6, no. 30, p. eaba2619 -
|0 PERI:(DE-600)2810933-8
|n 30
|p eaba2619 -
|t Science advances
|v 6
|y 2020
|x 2375-2548
856 4 _ |u https://advances.sciencemag.org/content/6/30/eaba2619
856 4 _ |u https://pub.dzne.de/record/153282/files/DZNE-2020-01279.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/153282/files/DZNE-2020-01279.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:153282
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2812499
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2812478
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2810728
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)2810547
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-342
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms and Model Systems
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-345
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Population Studies and Genetics
|x 1
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-08
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC (No Version)
|0 LIC:(DE-HGF)CCBYNCNV
|2 V:(DE-HGF)
|b DOAJ
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2022-11-08
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI ADV : 2021
|d 2022-11-08
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b SCI ADV : 2021
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-09-20T13:50:30Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-09-20T13:50:30Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-08
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-08
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-22
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-08-22
920 1 _ |0 I:(DE-2719)1410003
|k AG Bonn 1
|l Computational analysis of biological networks
|x 0
920 1 _ |0 I:(DE-2719)1210002
|k AG Heutink
|l Genome Biology of Neurodegenerative Diseases
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1410003
980 _ _ |a I:(DE-2719)1210002
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21