Home > Publications Database > Deep learning–based cell composition analysis from tissue expression profiles > print |
001 | 153282 | ||
005 | 20240420115847.0 | ||
024 | 7 | _ | |a pmid:32832661 |2 pmid |
024 | 7 | _ | |a 10.1126/sciadv.aba2619 |2 doi |
024 | 7 | _ | |a altmetric:86258416 |2 altmetric |
024 | 7 | _ | |a pmc:PMC7439569 |2 pmc |
037 | _ | _ | |a DZNE-2020-01279 |
041 | _ | _ | |a English |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Menden, Kevin |0 P:(DE-2719)2812499 |b 0 |e First author |u dzne |
245 | _ | _ | |a Deep learning–based cell composition analysis from tissue expression profiles |
260 | _ | _ | |a Washington, DC [u.a.] |c 2020 |b Assoc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1713534655_11035 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We present Scaden, a deep neural network for cell deconvolution that uses gene expression information to infer the cellular composition of tissues. Scaden is trained on single-cell RNA sequencing (RNA-seq) data to engineer discriminative features that confer robustness to bias and noise, making complex data preprocessing and feature selection unnecessary. We demonstrate that Scaden outperforms existing deconvolution algorithms in both precision and robustness. A single trained network reliably deconvolves bulk RNA-seq and microarray, human and mouse tissue expression data and leverages the combined information of multiple datasets. Because of this stability and flexibility, we surmise that deep learning will become an algorithmic mainstay for cell deconvolution of various data types. Scaden’s software package and web application are easy to use on new as well as diverse existing expression datasets available in public resources, deepening the molecular and cellular understanding of developmental and disease processes. |
536 | _ | _ | |a 342 - Disease Mechanisms and Model Systems (POF3-342) |0 G:(DE-HGF)POF3-342 |c POF3-342 |f POF III |x 0 |
536 | _ | _ | |a 345 - Population Studies and Genetics (POF3-345) |0 G:(DE-HGF)POF3-345 |c POF3-345 |f POF III |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Marouf, Mohamed |0 0000-0002-3877-7793 |b 1 |
700 | 1 | _ | |a Oller, Sergio |0 0000-0002-8994-1549 |b 2 |
700 | 1 | _ | |a Dalmia, Anupriya |0 P:(DE-2719)2812478 |b 3 |u dzne |
700 | 1 | _ | |a Magruder, Daniel Sumner |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Kloiber, Karin |b 5 |
700 | 1 | _ | |a Heutink, Peter |0 P:(DE-2719)2810728 |b 6 |u dzne |
700 | 1 | _ | |a Bonn, Stefan |0 P:(DE-2719)2810547 |b 7 |e Last author |u dzne |
773 | _ | _ | |a 10.1126/sciadv.aba2619 |g Vol. 6, no. 30, p. eaba2619 - |0 PERI:(DE-600)2810933-8 |n 30 |p eaba2619 - |t Science advances |v 6 |y 2020 |x 2375-2548 |
856 | 4 | _ | |u https://advances.sciencemag.org/content/6/30/eaba2619 |
856 | 4 | _ | |u https://pub.dzne.de/record/153282/files/DZNE-2020-01279.pdf |y OpenAccess |
856 | 4 | _ | |u https://pub.dzne.de/record/153282/files/DZNE-2020-01279.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:pub.dzne.de:153282 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 0 |6 P:(DE-2719)2812499 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 3 |6 P:(DE-2719)2812478 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 6 |6 P:(DE-2719)2810728 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 7 |6 P:(DE-2719)2810547 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Erkrankungen des Nervensystems |1 G:(DE-HGF)POF3-340 |0 G:(DE-HGF)POF3-342 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-300 |4 G:(DE-HGF)POF |v Disease Mechanisms and Model Systems |x 0 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Erkrankungen des Nervensystems |1 G:(DE-HGF)POF3-340 |0 G:(DE-HGF)POF3-345 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-300 |4 G:(DE-HGF)POF |v Population Studies and Genetics |x 1 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-08 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial CC BY-NC (No Version) |0 LIC:(DE-HGF)CCBYNCNV |2 V:(DE-HGF) |b DOAJ |d 2020-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2022-11-08 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SCI ADV : 2021 |d 2022-11-08 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b SCI ADV : 2021 |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-09-20T13:50:30Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-09-20T13:50:30Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-08 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-08 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2020-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-08-22 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2020-08-22 |
920 | 1 | _ | |0 I:(DE-2719)1410003 |k AG Bonn 1 |l Computational analysis of biological networks |x 0 |
920 | 1 | _ | |0 I:(DE-2719)1210002 |k AG Heutink |l Genome Biology of Neurodegenerative Diseases |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-2719)1410003 |
980 | _ | _ | |a I:(DE-2719)1210002 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|