001     153287
005     20240420115848.0
024 7 _ |a 10.1186/s12974-020-01883-5
|2 doi
024 7 _ |a altmetric:85725766
|2 altmetric
024 7 _ |a pmid:32660586
|2 pmid
037 _ _ |a DZNE-2020-01284
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Eckenweber, Florian
|b 0
245 _ _ |a Longitudinal TSPO expression in tau transgenic P301S mice predicts increased tau accumulation and deteriorated spatial learning
260 _ _ |a London
|c 2020
|b BioMed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1713533333_11032
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a BackgroundP301S tau transgenic mice show age-dependent accumulation of neurofibrillary tangles in the brainstem, hippocampus, and neocortex, leading to neuronal loss and cognitive deterioration. However, there is hitherto only sparse documentation of the role of neuroinflammation in tau mouse models. Thus, we analyzed longitudinal microglial activation by small animal 18 kDa translocator protein positron-emission-tomography (TSPO μPET) imaging in vivo, in conjunction with terminal assessment of tau pathology, spatial learning, and cerebral glucose metabolism.MethodsTransgenic P301S (n = 33) and wild-type (n = 18) female mice were imaged by 18F-GE-180 TSPO μPET at the ages of 1.9, 3.9, and 6.4 months. We conducted behavioral testing in the Morris water maze, 18F-fluordesoxyglucose (18F-FDG) μPET, and AT8 tau immunohistochemistry at 6.3–6.7 months. Terminal microglial immunohistochemistry served for validation of TSPO μPET results in vivo, applying target regions in the brainstem, cortex, cerebellum, and hippocampus. We compared the results with our historical data in amyloid-β mouse models.ResultsTSPO expression in all target regions of P301S mice increased exponentially from 1.9 to 6.4 months, leading to significant differences in the contrasts with wild-type mice at 6.4 months (+ 11–23%, all p < 0.001), but the apparent microgliosis proceeded more slowly than in our experience in amyloid-β mouse models. Spatial learning and glucose metabolism of AT8-positive P301S mice were significantly impaired at 6.3–6.5 months compared to the wild-type group. Longitudinal increases in TSPO expression predicted greater tau accumulation and lesser spatial learning performance at 6.3–6.7 months.ConclusionsMonitoring of TSPO expression as a surrogate of microglial activation in P301S tau transgenic mice by μPET indicates a delayed time course when compared to amyloid-β mouse models. Detrimental associations of microglial activation with outcome parameters are opposite to earlier data in amyloid-β mouse models. The contribution of microglial response to pathology accompanying amyloid-β and tau over-expression merits further investigation.
536 _ _ |a 342 - Disease Mechanisms and Model Systems (POF3-342)
|0 G:(DE-HGF)POF3-342
|c POF3-342
|f POF III
|x 0
536 _ _ |a 344 - Clinical and Health Care Research (POF3-344)
|0 G:(DE-HGF)POF3-344
|c POF3-344
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Medina-Luque, Jose
|b 1
700 1 _ |a Blume, Tanja
|0 P:(DE-2719)2811522
|b 2
|u dzne
700 1 _ |a Sacher, Christian
|b 3
700 1 _ |a Biechele, Gloria
|b 4
700 1 _ |a Wind, Karin
|b 5
700 1 _ |a Deussing, Maximilian
|b 6
700 1 _ |a Briel, Nils
|b 7
700 1 _ |a Lindner, Simon
|b 8
700 1 _ |a Boening, Guido
|b 9
700 1 _ |a von Ungern-Sternberg, Barbara
|b 10
700 1 _ |a Unterrainer, Marcus
|b 11
700 1 _ |a Albert, Nathalie L.
|b 12
700 1 _ |a Zwergal, Andreas
|b 13
700 1 _ |a Levin, Johannes
|0 P:(DE-2719)2811659
|b 14
|u dzne
700 1 _ |a Bartenstein, Peter
|b 15
700 1 _ |a Cumming, Paul
|b 16
700 1 _ |a Rominger, Axel
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Höglinger, Günter U.
|0 P:(DE-2719)2811373
|b 18
|u dzne
700 1 _ |a Herms, Jochen
|0 P:(DE-2719)2810441
|b 19
|u dzne
700 1 _ |a Brendel, Matthias
|0 0000-0002-9247-2843
|b 20
|e Corresponding author
773 _ _ |a 10.1186/s12974-020-01883-5
|g Vol. 17, no. 1, p. 208
|0 PERI:(DE-600)2156455-3
|n 1
|p 208
|t Journal of neuroinflammation
|v 17
|y 2020
|x 1742-2094
856 4 _ |u https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-020-01883-5
856 4 _ |u https://pub.dzne.de/record/153287/files/DZNE-2020-01284.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/153287/files/DZNE-2020-01284.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:153287
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2811522
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 14
|6 P:(DE-2719)2811659
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 18
|6 P:(DE-2719)2811373
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 19
|6 P:(DE-2719)2810441
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-342
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms and Model Systems
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-344
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 1
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-03-30
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-03-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NEUROINFLAMM : 2021
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-08-15T08:22:49Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-08-15T08:22:49Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-03-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-03-30
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-04
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J NEUROINFLAMM : 2021
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-03-30
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-04
920 1 _ |0 I:(DE-2719)1110001
|k AG Herms
|l Translational Brain Research
|x 0
920 1 _ |0 I:(DE-2719)1111016
|k AG Levin
|l Clinical Neurodegeneration
|x 1
920 1 _ |0 I:(DE-2719)6000016
|k München common
|l München common
|x 2
920 1 _ |0 I:(DE-2719)1110002
|k AG Höglinger 1
|l Translational Neurodegeneration
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1110001
980 _ _ |a I:(DE-2719)1111016
980 _ _ |a I:(DE-2719)6000016
980 _ _ |a I:(DE-2719)1110002
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21