000153313 001__ 153313 000153313 005__ 20240420115848.0 000153313 0247_ $$2doi$$a10.1038/s41467-020-16721-8 000153313 0247_ $$2pmid$$apmid:32504029 000153313 0247_ $$2pmc$$apmc:PMC7275043 000153313 0247_ $$2altmetric$$aaltmetric:83517573 000153313 037__ $$aDZNE-2020-01310 000153313 041__ $$aEnglish 000153313 082__ $$a500 000153313 1001_ $$0P:(DE-HGF)0$$aMichiels, Emiel$$b0 000153313 245__ $$aReverse engineering synthetic antiviral amyloids. 000153313 260__ $$a[London]$$bNature Publishing Group UK$$c2020 000153313 3367_ $$2DRIVER$$aarticle 000153313 3367_ $$2DataCite$$aOutput Types/Journal article 000153313 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1713533787_11034 000153313 3367_ $$2BibTeX$$aARTICLE 000153313 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000153313 3367_ $$00$$2EndNote$$aJournal Article 000153313 520__ $$aHuman amyloids have been shown to interact with viruses and interfere with viral replication. Based on this observation, we employed a synthetic biology approach in which we engineered virus-specific amyloids against influenza A and Zika proteins. Each amyloid shares a homologous aggregation-prone fragment with a specific viral target protein. For influenza we demonstrate that a designer amyloid against PB2 accumulates in influenza A-infected tissue in vivo. Moreover, this amyloid acts specifically against influenza A and its common PB2 polymorphisms, but not influenza B, which lacks the homologous fragment. Our model amyloid demonstrates that the sequence specificity of amyloid interactions has the capacity to tune amyloid-virus interactions while allowing for the flexibility to maintain activity on evolutionary diverging variants. 000153313 536__ $$0G:(DE-HGF)POF3-342$$a342 - Disease Mechanisms and Model Systems (POF3-342)$$cPOF3-342$$fPOF III$$x0 000153313 588__ $$aDataset connected to CrossRef, PubMed, 000153313 650_7 $$2NLM Chemicals$$aAmyloid 000153313 650_7 $$2NLM Chemicals$$aAntiviral Agents 000153313 650_7 $$2NLM Chemicals$$aRecombinant Proteins 000153313 650_7 $$2NLM Chemicals$$aViral Proteins 000153313 650_2 $$2MeSH$$aAmyloid: genetics 000153313 650_2 $$2MeSH$$aAmyloid: pharmacology 000153313 650_2 $$2MeSH$$aAmyloid: therapeutic use 000153313 650_2 $$2MeSH$$aAnimals 000153313 650_2 $$2MeSH$$aAntiviral Agents: pharmacology 000153313 650_2 $$2MeSH$$aAntiviral Agents: therapeutic use 000153313 650_2 $$2MeSH$$aDisease Models, Animal 000153313 650_2 $$2MeSH$$aDogs 000153313 650_2 $$2MeSH$$aFemale 000153313 650_2 $$2MeSH$$aHEK293 Cells 000153313 650_2 $$2MeSH$$aHost-Pathogen Interactions: drug effects 000153313 650_2 $$2MeSH$$aHumans 000153313 650_2 $$2MeSH$$aInfluenza A virus: drug effects 000153313 650_2 $$2MeSH$$aInfluenza A virus: genetics 000153313 650_2 $$2MeSH$$aInfluenza A virus: pathogenicity 000153313 650_2 $$2MeSH$$aInfluenza, Human: drug therapy 000153313 650_2 $$2MeSH$$aInfluenza, Human: virology 000153313 650_2 $$2MeSH$$aMadin Darby Canine Kidney Cells 000153313 650_2 $$2MeSH$$aMice 000153313 650_2 $$2MeSH$$aPolymorphism, Genetic 000153313 650_2 $$2MeSH$$aRecombinant Proteins: genetics 000153313 650_2 $$2MeSH$$aRecombinant Proteins: pharmacology 000153313 650_2 $$2MeSH$$aRecombinant Proteins: therapeutic use 000153313 650_2 $$2MeSH$$aReverse Genetics: methods 000153313 650_2 $$2MeSH$$aSynthetic Biology: methods 000153313 650_2 $$2MeSH$$aViral Proteins: genetics 000153313 650_2 $$2MeSH$$aViral Proteins: metabolism 000153313 650_2 $$2MeSH$$aVirus Replication: drug effects 000153313 650_2 $$2MeSH$$aZika Virus: drug effects 000153313 650_2 $$2MeSH$$aZika Virus: genetics 000153313 650_2 $$2MeSH$$aZika Virus: pathogenicity 000153313 650_2 $$2MeSH$$aZika Virus Infection: drug therapy 000153313 650_2 $$2MeSH$$aZika Virus Infection: virology 000153313 7001_ $$0P:(DE-HGF)0$$aRoose, Kenny$$b1 000153313 7001_ $$0P:(DE-HGF)0$$aGallardo, Rodrigo$$b2 000153313 7001_ $$aKhodaparast, Ladan$$b3 000153313 7001_ $$aKhodaparast, Laleh$$b4 000153313 7001_ $$0P:(DE-HGF)0$$avan der Kant, Rob$$b5 000153313 7001_ $$aSiemons, Maxime$$b6 000153313 7001_ $$0P:(DE-HGF)0$$aHouben, Bert$$b7 000153313 7001_ $$aRamakers, Meine$$b8 000153313 7001_ $$aWilkinson, Hannah$$b9 000153313 7001_ $$aGuerreiro, Patricia$$b10 000153313 7001_ $$aLouros, Nikolaos$$b11 000153313 7001_ $$0P:(DE-HGF)0$$aKaptein, Suzanne J F$$b12 000153313 7001_ $$0P:(DE-HGF)0$$aIbañez, Lorena Itatí$$b13 000153313 7001_ $$aSmet, Anouk$$b14 000153313 7001_ $$aBaatsen, Pieter$$b15 000153313 7001_ $$0P:(DE-2719)2810461$$aLiu, Shu$$b16$$udzne 000153313 7001_ $$0P:(DE-2719)2481765$$aVorberg, Ina$$b17$$udzne 000153313 7001_ $$aBormans, Guy$$b18 000153313 7001_ $$aNeyts, Johan$$b19 000153313 7001_ $$0P:(DE-HGF)0$$aSaelens, Xavier$$b20 000153313 7001_ $$0P:(DE-HGF)0$$aRousseau, Frederic$$b21$$eCorresponding author 000153313 7001_ $$0P:(DE-HGF)0$$aSchymkowitz, Joost$$b22$$eCorresponding author 000153313 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-020-16721-8$$gVol. 11, no. 1, p. 2832$$n1$$p2832$$tNature Communications$$v11$$x2041-1723$$y2020 000153313 8564_ $$uhttps://pub.dzne.de/record/153313/files/DZNE-2020-01310.pdf$$yOpenAccess 000153313 8564_ $$uhttps://pub.dzne.de/record/153313/files/DZNE-2020-01310.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000153313 909CO $$ooai:pub.dzne.de:153313$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery 000153313 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810461$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b16$$kDZNE 000153313 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2481765$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b17$$kDZNE 000153313 9131_ $$0G:(DE-HGF)POF3-342$$1G:(DE-HGF)POF3-340$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lErkrankungen des Nervensystems$$vDisease Mechanisms and Model Systems$$x0 000153313 9141_ $$y2020 000153313 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11 000153313 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2020-08-25 000153313 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-11 000153313 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-25 000153313 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11 000153313 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-11 000153313 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2021$$d2022-11-11 000153313 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2021$$d2022-11-11 000153313 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-11 000153313 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-10-13T14:44:21Z 000153313 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-25 000153313 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-10-13T14:44:21Z 000153313 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11 000153313 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11 000153313 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000153313 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-10-13T14:44:21Z 000153313 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-25 000153313 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2022-11-11 000153313 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-25 000153313 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11 000153313 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-25 000153313 9201_ $$0I:(DE-2719)1013004$$kAG Vorberg$$lPrion Cell Biology$$x0 000153313 980__ $$ajournal 000153313 980__ $$aVDB 000153313 980__ $$aUNRESTRICTED 000153313 980__ $$aI:(DE-2719)1013004 000153313 9801_ $$aFullTexts