000153313 001__ 153313
000153313 005__ 20240420115848.0
000153313 0247_ $$2doi$$a10.1038/s41467-020-16721-8
000153313 0247_ $$2pmid$$apmid:32504029
000153313 0247_ $$2pmc$$apmc:PMC7275043
000153313 0247_ $$2altmetric$$aaltmetric:83517573
000153313 037__ $$aDZNE-2020-01310
000153313 041__ $$aEnglish
000153313 082__ $$a500
000153313 1001_ $$0P:(DE-HGF)0$$aMichiels, Emiel$$b0
000153313 245__ $$aReverse engineering synthetic antiviral amyloids.
000153313 260__ $$a[London]$$bNature Publishing Group UK$$c2020
000153313 3367_ $$2DRIVER$$aarticle
000153313 3367_ $$2DataCite$$aOutput Types/Journal article
000153313 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1713533787_11034
000153313 3367_ $$2BibTeX$$aARTICLE
000153313 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000153313 3367_ $$00$$2EndNote$$aJournal Article
000153313 520__ $$aHuman amyloids have been shown to interact with viruses and interfere with viral replication. Based on this observation, we employed a synthetic biology approach in which we engineered virus-specific amyloids against influenza A and Zika proteins. Each amyloid shares a homologous aggregation-prone fragment with a specific viral target protein. For influenza we demonstrate that a designer amyloid against PB2 accumulates in influenza A-infected tissue in vivo. Moreover, this amyloid acts specifically against influenza A and its common PB2 polymorphisms, but not influenza B, which lacks the homologous fragment. Our model amyloid demonstrates that the sequence specificity of amyloid interactions has the capacity to tune amyloid-virus interactions while allowing for the flexibility to maintain activity on evolutionary diverging variants.
000153313 536__ $$0G:(DE-HGF)POF3-342$$a342 - Disease Mechanisms and Model Systems (POF3-342)$$cPOF3-342$$fPOF III$$x0
000153313 588__ $$aDataset connected to CrossRef, PubMed,
000153313 650_7 $$2NLM Chemicals$$aAmyloid
000153313 650_7 $$2NLM Chemicals$$aAntiviral Agents
000153313 650_7 $$2NLM Chemicals$$aRecombinant Proteins
000153313 650_7 $$2NLM Chemicals$$aViral Proteins
000153313 650_2 $$2MeSH$$aAmyloid: genetics
000153313 650_2 $$2MeSH$$aAmyloid: pharmacology
000153313 650_2 $$2MeSH$$aAmyloid: therapeutic use
000153313 650_2 $$2MeSH$$aAnimals
000153313 650_2 $$2MeSH$$aAntiviral Agents: pharmacology
000153313 650_2 $$2MeSH$$aAntiviral Agents: therapeutic use
000153313 650_2 $$2MeSH$$aDisease Models, Animal
000153313 650_2 $$2MeSH$$aDogs
000153313 650_2 $$2MeSH$$aFemale
000153313 650_2 $$2MeSH$$aHEK293 Cells
000153313 650_2 $$2MeSH$$aHost-Pathogen Interactions: drug effects
000153313 650_2 $$2MeSH$$aHumans
000153313 650_2 $$2MeSH$$aInfluenza A virus: drug effects
000153313 650_2 $$2MeSH$$aInfluenza A virus: genetics
000153313 650_2 $$2MeSH$$aInfluenza A virus: pathogenicity
000153313 650_2 $$2MeSH$$aInfluenza, Human: drug therapy
000153313 650_2 $$2MeSH$$aInfluenza, Human: virology
000153313 650_2 $$2MeSH$$aMadin Darby Canine Kidney Cells
000153313 650_2 $$2MeSH$$aMice
000153313 650_2 $$2MeSH$$aPolymorphism, Genetic
000153313 650_2 $$2MeSH$$aRecombinant Proteins: genetics
000153313 650_2 $$2MeSH$$aRecombinant Proteins: pharmacology
000153313 650_2 $$2MeSH$$aRecombinant Proteins: therapeutic use
000153313 650_2 $$2MeSH$$aReverse Genetics: methods
000153313 650_2 $$2MeSH$$aSynthetic Biology: methods
000153313 650_2 $$2MeSH$$aViral Proteins: genetics
000153313 650_2 $$2MeSH$$aViral Proteins: metabolism
000153313 650_2 $$2MeSH$$aVirus Replication: drug effects
000153313 650_2 $$2MeSH$$aZika Virus: drug effects
000153313 650_2 $$2MeSH$$aZika Virus: genetics
000153313 650_2 $$2MeSH$$aZika Virus: pathogenicity
000153313 650_2 $$2MeSH$$aZika Virus Infection: drug therapy
000153313 650_2 $$2MeSH$$aZika Virus Infection: virology
000153313 7001_ $$0P:(DE-HGF)0$$aRoose, Kenny$$b1
000153313 7001_ $$0P:(DE-HGF)0$$aGallardo, Rodrigo$$b2
000153313 7001_ $$aKhodaparast, Ladan$$b3
000153313 7001_ $$aKhodaparast, Laleh$$b4
000153313 7001_ $$0P:(DE-HGF)0$$avan der Kant, Rob$$b5
000153313 7001_ $$aSiemons, Maxime$$b6
000153313 7001_ $$0P:(DE-HGF)0$$aHouben, Bert$$b7
000153313 7001_ $$aRamakers, Meine$$b8
000153313 7001_ $$aWilkinson, Hannah$$b9
000153313 7001_ $$aGuerreiro, Patricia$$b10
000153313 7001_ $$aLouros, Nikolaos$$b11
000153313 7001_ $$0P:(DE-HGF)0$$aKaptein, Suzanne J F$$b12
000153313 7001_ $$0P:(DE-HGF)0$$aIbañez, Lorena Itatí$$b13
000153313 7001_ $$aSmet, Anouk$$b14
000153313 7001_ $$aBaatsen, Pieter$$b15
000153313 7001_ $$0P:(DE-2719)2810461$$aLiu, Shu$$b16$$udzne
000153313 7001_ $$0P:(DE-2719)2481765$$aVorberg, Ina$$b17$$udzne
000153313 7001_ $$aBormans, Guy$$b18
000153313 7001_ $$aNeyts, Johan$$b19
000153313 7001_ $$0P:(DE-HGF)0$$aSaelens, Xavier$$b20
000153313 7001_ $$0P:(DE-HGF)0$$aRousseau, Frederic$$b21$$eCorresponding author
000153313 7001_ $$0P:(DE-HGF)0$$aSchymkowitz, Joost$$b22$$eCorresponding author
000153313 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-020-16721-8$$gVol. 11, no. 1, p. 2832$$n1$$p2832$$tNature Communications$$v11$$x2041-1723$$y2020
000153313 8564_ $$uhttps://pub.dzne.de/record/153313/files/DZNE-2020-01310.pdf$$yOpenAccess
000153313 8564_ $$uhttps://pub.dzne.de/record/153313/files/DZNE-2020-01310.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000153313 909CO $$ooai:pub.dzne.de:153313$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000153313 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810461$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b16$$kDZNE
000153313 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2481765$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b17$$kDZNE
000153313 9131_ $$0G:(DE-HGF)POF3-342$$1G:(DE-HGF)POF3-340$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lErkrankungen des Nervensystems$$vDisease Mechanisms and Model Systems$$x0
000153313 9141_ $$y2020
000153313 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000153313 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2020-08-25
000153313 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-11
000153313 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-25
000153313 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000153313 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-11
000153313 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2021$$d2022-11-11
000153313 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2021$$d2022-11-11
000153313 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-11
000153313 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-10-13T14:44:21Z
000153313 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-25
000153313 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-10-13T14:44:21Z
000153313 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000153313 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000153313 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000153313 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-10-13T14:44:21Z
000153313 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-25
000153313 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2022-11-11
000153313 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-25
000153313 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000153313 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-25
000153313 9201_ $$0I:(DE-2719)1013004$$kAG Vorberg$$lPrion Cell Biology$$x0
000153313 980__ $$ajournal
000153313 980__ $$aVDB
000153313 980__ $$aUNRESTRICTED
000153313 980__ $$aI:(DE-2719)1013004
000153313 9801_ $$aFullTexts