001     153313
005     20240420115848.0
024 7 _ |a 10.1038/s41467-020-16721-8
|2 doi
024 7 _ |a pmid:32504029
|2 pmid
024 7 _ |a pmc:PMC7275043
|2 pmc
024 7 _ |a altmetric:83517573
|2 altmetric
037 _ _ |a DZNE-2020-01310
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Michiels, Emiel
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Reverse engineering synthetic antiviral amyloids.
260 _ _ |a [London]
|c 2020
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1713533787_11034
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Human amyloids have been shown to interact with viruses and interfere with viral replication. Based on this observation, we employed a synthetic biology approach in which we engineered virus-specific amyloids against influenza A and Zika proteins. Each amyloid shares a homologous aggregation-prone fragment with a specific viral target protein. For influenza we demonstrate that a designer amyloid against PB2 accumulates in influenza A-infected tissue in vivo. Moreover, this amyloid acts specifically against influenza A and its common PB2 polymorphisms, but not influenza B, which lacks the homologous fragment. Our model amyloid demonstrates that the sequence specificity of amyloid interactions has the capacity to tune amyloid-virus interactions while allowing for the flexibility to maintain activity on evolutionary diverging variants.
536 _ _ |a 342 - Disease Mechanisms and Model Systems (POF3-342)
|0 G:(DE-HGF)POF3-342
|c POF3-342
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a Amyloid
|2 NLM Chemicals
650 _ 7 |a Antiviral Agents
|2 NLM Chemicals
650 _ 7 |a Recombinant Proteins
|2 NLM Chemicals
650 _ 7 |a Viral Proteins
|2 NLM Chemicals
650 _ 2 |a Amyloid: genetics
|2 MeSH
650 _ 2 |a Amyloid: pharmacology
|2 MeSH
650 _ 2 |a Amyloid: therapeutic use
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Antiviral Agents: pharmacology
|2 MeSH
650 _ 2 |a Antiviral Agents: therapeutic use
|2 MeSH
650 _ 2 |a Disease Models, Animal
|2 MeSH
650 _ 2 |a Dogs
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a HEK293 Cells
|2 MeSH
650 _ 2 |a Host-Pathogen Interactions: drug effects
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Influenza A virus: drug effects
|2 MeSH
650 _ 2 |a Influenza A virus: genetics
|2 MeSH
650 _ 2 |a Influenza A virus: pathogenicity
|2 MeSH
650 _ 2 |a Influenza, Human: drug therapy
|2 MeSH
650 _ 2 |a Influenza, Human: virology
|2 MeSH
650 _ 2 |a Madin Darby Canine Kidney Cells
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Polymorphism, Genetic
|2 MeSH
650 _ 2 |a Recombinant Proteins: genetics
|2 MeSH
650 _ 2 |a Recombinant Proteins: pharmacology
|2 MeSH
650 _ 2 |a Recombinant Proteins: therapeutic use
|2 MeSH
650 _ 2 |a Reverse Genetics: methods
|2 MeSH
650 _ 2 |a Synthetic Biology: methods
|2 MeSH
650 _ 2 |a Viral Proteins: genetics
|2 MeSH
650 _ 2 |a Viral Proteins: metabolism
|2 MeSH
650 _ 2 |a Virus Replication: drug effects
|2 MeSH
650 _ 2 |a Zika Virus: drug effects
|2 MeSH
650 _ 2 |a Zika Virus: genetics
|2 MeSH
650 _ 2 |a Zika Virus: pathogenicity
|2 MeSH
650 _ 2 |a Zika Virus Infection: drug therapy
|2 MeSH
650 _ 2 |a Zika Virus Infection: virology
|2 MeSH
700 1 _ |a Roose, Kenny
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Gallardo, Rodrigo
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Khodaparast, Ladan
|b 3
700 1 _ |a Khodaparast, Laleh
|b 4
700 1 _ |a van der Kant, Rob
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Siemons, Maxime
|b 6
700 1 _ |a Houben, Bert
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Ramakers, Meine
|b 8
700 1 _ |a Wilkinson, Hannah
|b 9
700 1 _ |a Guerreiro, Patricia
|b 10
700 1 _ |a Louros, Nikolaos
|b 11
700 1 _ |a Kaptein, Suzanne J F
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Ibañez, Lorena Itatí
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Smet, Anouk
|b 14
700 1 _ |a Baatsen, Pieter
|b 15
700 1 _ |a Liu, Shu
|0 P:(DE-2719)2810461
|b 16
|u dzne
700 1 _ |a Vorberg, Ina
|0 P:(DE-2719)2481765
|b 17
|u dzne
700 1 _ |a Bormans, Guy
|b 18
700 1 _ |a Neyts, Johan
|b 19
700 1 _ |a Saelens, Xavier
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Rousseau, Frederic
|0 P:(DE-HGF)0
|b 21
|e Corresponding author
700 1 _ |a Schymkowitz, Joost
|0 P:(DE-HGF)0
|b 22
|e Corresponding author
773 _ _ |a 10.1038/s41467-020-16721-8
|g Vol. 11, no. 1, p. 2832
|0 PERI:(DE-600)2553671-0
|n 1
|p 2832
|t Nature Communications
|v 11
|y 2020
|x 2041-1723
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/153313/files/DZNE-2020-01310.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/153313/files/DZNE-2020-01310.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:153313
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 16
|6 P:(DE-2719)2810461
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 17
|6 P:(DE-2719)2481765
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-342
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms and Model Systems
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-11
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2022-11-11
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2021
|d 2022-11-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2021
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-10-13T14:44:21Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-10-13T14:44:21Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-11
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2021-10-13T14:44:21Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-11
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-08-25
920 1 _ |0 I:(DE-2719)1013004
|k AG Vorberg
|l Prion Cell Biology
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1013004
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21