001     153364
005     20240613132355.0
024 7 _ |a 0924-7947
|2 ISSN
024 7 _ |a 10.1016/j.archger.2020.104069
|2 doi
024 7 _ |a pmid:32413689
|2 pmid
024 7 _ |a 0167-4943
|2 ISSN
024 7 _ |a 1872-6976
|2 ISSN
024 7 _ |a altmetric:82375918
|2 altmetric
037 _ _ |a DZNE-2020-01361
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Hajek, André
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Prevalence and factors associated with obesity among the oldest old.
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science3284
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1718277787_11708
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a To determine the prevalence of overweight and obesity, and to identify factors associated with obesity, among the oldest old.For this study, data from follow-up (FU) wave 7 and FU wave 8 of the 'Study on Needs, Health Service Use, Costs and Health-Related Quality of Life in a Large Sample of Oldest-Old Primary Care Patients (85+)' (AgeQualiDe) were used. At FU wave 7, the mean age was 88.9 years (SD: 2.9; 85-100 years). Body-mass-index (BMI) categories were defined according to the World Health Organization (WHO) thresholds: underweight (BMI < 18.5 kg/m²), normal weight (18.5 kg/m² ≤ BMI < 25 kg/m²), overweight (25 kg/m² ≤ BMI < 30 kg/m²), and obesity (BMI ≥ 30 kg/m²). Longitudinal regression analysis was used to determine factors associated with obesity.At FU wave 7, 3.0 % were underweight, 48.9 % were normal weight, 37.9 % were overweight, and 10.2 % were obese. Regressions showed that the probability of obesity decreased with age (OR: 0.77 [95 % CI: .593-.999]) and less chronic conditions (OR: 1.32 [95 % CI: 1.11-1.57]). The probability of obesity was not associated with sex, educational level, marital status, social isolation, visual impairment, hearing impairment, depression, and dementia.Nearly half of the individuals in very late life had excess weight. Thus, excess weight remains a major challenge, even in very old age. Given the demographic ageing in upcoming decades, this is an issue which we should be aware of.
536 _ _ |a 344 - Clinical and Health Care Research (POF3-344)
|0 G:(DE-HGF)POF3-344
|c POF3-344
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 2 |a Aged, 80 and over
|2 MeSH
650 _ 2 |a Body Mass Index
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Obesity: epidemiology
|2 MeSH
650 _ 2 |a Overweight: epidemiology
|2 MeSH
650 _ 2 |a Prevalence
|2 MeSH
650 _ 2 |a Quality of Life
|2 MeSH
650 _ 2 |a Thinness: epidemiology
|2 MeSH
700 1 _ |a Brettschneider, Christian
|b 1
700 1 _ |a van der Leeden, Carolin
|b 2
700 1 _ |a Lühmann, Dagmar
|b 3
700 1 _ |a Oey, Anke
|b 4
700 1 _ |a Wiese, Birgitt
|b 5
700 1 _ |a Weyerer, Siegfried
|b 6
700 1 _ |a Werle, Jochen
|b 7
700 1 _ |a Fuchs, Angela
|b 8
700 1 _ |a Pentzek, Michael
|b 9
700 1 _ |a Röhr, Susanne
|b 10
700 1 _ |a Löbner, Margrit
|b 11
700 1 _ |a Mösch, Edelgard
|b 12
700 1 _ |a Bickel, Horst
|b 13
700 1 _ |a Heser, Kathrin
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Wagner, Michael
|0 P:(DE-2719)2000057
|b 15
|u dzne
700 1 _ |a Scherer, Martin
|b 16
700 1 _ |a Maier, Wolfgang
|0 P:(DE-2719)2000015
|b 17
|u dzne
700 1 _ |a Riedel-Heller, Steffi G
|b 18
700 1 _ |a König, Hans-Helmut
|b 19
773 _ _ |a 10.1016/j.archger.2020.104069
|g Vol. 89, p. 104069 -
|0 PERI:(DE-600)2024857-X
|p 104069
|t Archives of gerontology and geriatrics
|v 89
|y 2020
|x 0167-4943
856 4 _ |u https://pub.dzne.de/record/153364/files/DZNE-2020-01361_Restricted.pdf
856 4 _ |u https://pub.dzne.de/record/153364/files/DZNE-2020-01361_Restricted.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:pub.dzne.de:153364
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 15
|6 P:(DE-2719)2000057
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 17
|6 P:(DE-2719)2000015
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-344
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-08-31
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-31
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-10
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ARCH GERONTOL GERIAT : 2021
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-10
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-10
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-10
920 1 _ |0 I:(DE-2719)1011201
|k AG Wagner
|l Neuropsychology
|x 0
920 1 _ |0 I:(DE-2719)7000001
|k U Clinical Researchers - Bonn
|l U Clinical Researchers - Bonn
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1011201
980 _ _ |a I:(DE-2719)7000001
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21