001     153365
005     20240321221042.0
024 7 _ |a 10.1007/s00401-020-02178-y
|2 doi
024 7 _ |a pmid:32577828
|2 pmid
024 7 _ |a pmc:PMC7423812
|2 pmc
024 7 _ |a 0001-6322
|2 ISSN
024 7 _ |a 1432-0533
|2 ISSN
024 7 _ |a altmetric:84574384
|2 altmetric
037 _ _ |a DZNE-2020-01362
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Younas, Neelam
|b 0
245 _ _ |a SFPQ and Tau: critical factors contributing to rapid progression of Alzheimer's disease.
260 _ _ |a Heidelberg
|c 2020
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1606127548_9759
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Dysfunctional RNA-binding proteins (RBPs) have been implicated in several neurodegenerative disorders. Recently, this paradigm of RBPs has been extended to pathophysiology of Alzheimer's disease (AD). Here, we identified disease subtype specific variations in the RNA-binding proteome (RBPome) of sporadic AD (spAD), rapidly progressive AD (rpAD), and sporadic Creutzfeldt Jakob disease (sCJD), as well as control cases using RNA pull-down assay in combination with proteomics. We show that one of these identified proteins, splicing factor proline and glutamine rich (SFPQ), is downregulated in the post-mortem brains of rapidly progressive AD patients, sCJD patients and 3xTg mice brain at terminal stage of the disease. In contrast, the expression of SFPQ was elevated at early stage of the disease in the 3xTg mice, and in vitro after oxidative stress stimuli. Strikingly, in rpAD patients' brains SFPQ showed a significant dislocation from the nucleus and cytoplasmic colocalization with TIA-1. Furthermore, in rpAD brain lesions, SFPQ and p-tau showed extranuclear colocalization. Of note, association between SFPQ and tau-oligomers in rpAD brains suggests a possible role of SFPQ in oligomerization and subsequent misfolding of tau protein. In line with the findings from the human brain, our in vitro study showed that SFPQ is recruited into TIA-1-positive stress granules (SGs) after oxidative stress induction, and colocalizes with tau/p-tau in these granules, providing a possible mechanism of SFPQ dislocation through pathological SGs. Furthermore, the expression of human tau in vitro induced significant downregulation of SFPQ, suggesting a causal role of tau in the downregulation of SFPQ. The findings from the current study indicate that the dysregulation and dislocation of SFPQ, the subsequent DNA-related anomalies and aberrant dynamics of SGs in association with pathological tau represents a critical pathway which contributes to rapid progression of AD.
536 _ _ |a 344 - Clinical and Health Care Research (POF3-344)
|0 G:(DE-HGF)POF3-344
|c POF3-344
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 2 |a Alzheimer Disease: metabolism
|2 MeSH
650 _ 2 |a Alzheimer Disease: pathology
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Brain: metabolism
|2 MeSH
650 _ 2 |a Brain: pathology
|2 MeSH
650 _ 2 |a Creutzfeldt-Jakob Syndrome: metabolism
|2 MeSH
650 _ 2 |a Cytoplasm: metabolism
|2 MeSH
650 _ 2 |a Down-Regulation: physiology
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Mice, Transgenic
|2 MeSH
650 _ 2 |a PTB-Associated Splicing Factor: metabolism
|2 MeSH
650 _ 2 |a RNA-Binding Proteins: genetics
|2 MeSH
650 _ 2 |a RNA-Binding Proteins: metabolism
|2 MeSH
650 _ 2 |a tau Proteins: metabolism
|2 MeSH
700 1 _ |a Zafar, Saima
|0 P:(DE-2719)9000358
|b 1
|e Corresponding author
|u dzne
700 1 _ |a Shafiq, Mohsin
|0 P:(DE-2719)9000295
|b 2
|u dzne
700 1 _ |a Noor, Aneeqa
|0 P:(DE-2719)9001208
|b 3
|u dzne
700 1 _ |a Siegert, Anna
|0 P:(DE-2719)9000764
|b 4
|u dzne
700 1 _ |a Arora, Amandeep Singh
|0 P:(DE-2719)9000012
|b 5
|u dzne
700 1 _ |a Galkin, Alexey
|b 6
700 1 _ |a Zafar, Ayesha
|b 7
700 1 _ |a Schmitz, Matthias
|0 P:(DE-2719)9000287
|b 8
|u dzne
700 1 _ |a Stadelmann, Christine
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Andreoletti, Olivier
|b 10
700 1 _ |a Ferrer, Isidre
|b 11
700 1 _ |a Zerr, Inga
|0 P:(DE-2719)2000058
|b 12
|e Last author
|u dzne
773 _ _ |a 10.1007/s00401-020-02178-y
|g Vol. 140, no. 3, p. 317 - 339
|0 PERI:(DE-600)1458410-4
|n 3
|p 317 - 339
|t Acta neuropathologica
|v 140
|y 2020
|x 1432-0533
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/153365/files/401_2020_Article_2178.pdf
856 4 _ |y OpenAccess
|x icon
|u https://pub.dzne.de/record/153365/files/401_2020_Article_2178.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://pub.dzne.de/record/153365/files/401_2020_Article_2178.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://pub.dzne.de/record/153365/files/401_2020_Article_2178.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://pub.dzne.de/record/153365/files/401_2020_Article_2178.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/153365/files/401_2020_Article_2178.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:153365
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)9000358
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9000295
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)9001208
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)9000764
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)9000012
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)9000287
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 12
|6 P:(DE-2719)2000058
913 1 _ |a DE-HGF
|b Forschungsbereich Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-344
|2 G:(DE-HGF)POF3-300
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-29
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ACTA NEUROPATHOL : 2021
|d 2022-11-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACTA NEUROPATHOL : 2021
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-23
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2020-08-23
|w ger
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-29
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-23
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-29
920 1 _ |0 I:(DE-2719)5000037
|k Ext UMG Zerr
|l Ext UMG Zerr
|x 0
920 1 _ |0 I:(DE-2719)1440011-1
|k AG Zerr
|l Translational Studies and Biomarkers
|x 1
920 1 _ |0 I:(DE-2719)6000014
|k Göttingen Pre 2020
|l Göttingen Pre 2020
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)5000037
980 _ _ |a I:(DE-2719)1440011-1
980 _ _ |a I:(DE-2719)6000014
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21