001     153374
005     20240321221043.0
024 7 _ |a 10.1007/s00726-020-02865-w
|2 doi
024 7 _ |a pmid:32594255
|2 pmid
024 7 _ |a pmc:PMC7406479
|2 pmc
024 7 _ |a 0939-4451
|2 ISSN
024 7 _ |a 1438-2199
|2 ISSN
037 _ _ |a DZNE-2020-01371
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Neu, Axel
|b 0
245 _ _ |a Creatine, guanidinoacetate and homoarginine in statin-induced myopathy.
260 _ _ |a Wien [u.a.]
|c 2020
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1606141744_31133
|2 PUB:(DE-HGF)
|x Letter
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Our study evaluated the effect of creatine and homoarginine in AGAT- and GAMT-deficient mice after simvastatin exposure. Balestrino and Adriano suggest that guanidinoacetate might explain the difference between AGAT- and GAMT-deficient mice in simvastatin-induced myopathy. We agree with Balestrino and Adriano that our data shows that (1) creatine possesses a protective potential to ameliorate statin-induced myopathy in humans and mice and (2) homoarginine did not reveal a beneficial effect in statin-induced myopathy. Third, we agree that guanidinoacetate can be phosphorylated and partially compensate for phosphocreatine. In our study, simvastatin-induced damage showed a trend to be less pronounced in GAMT-deficient mice compared with wildtype mice. Therefore, (phospo) guanidinoacetate cannot completely explain the milder phenotype of GAMT-deficient mice, but we agree that it might contribute to ameliorate statin-induced myopathy in GAMT-deficient mice compared with AGAT-deficient mice. Finally, we agree with Balestino and Adriano that AGAT metabolites should further be evaluated as potential treatments in statin-induced myopathy.
536 _ _ |a 342 - Disease Mechanisms and Model Systems (POF3-342)
|0 G:(DE-HGF)POF3-342
|c POF3-342
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 2 |a Amidinotransferases: deficiency
|2 MeSH
650 _ 2 |a Amino Acid Metabolism, Inborn Errors
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Creatine: metabolism
|2 MeSH
650 _ 2 |a Creatine: pharmacology
|2 MeSH
650 _ 2 |a Developmental Disabilities
|2 MeSH
650 _ 2 |a Glycine: analogs & derivatives
|2 MeSH
650 _ 2 |a Glycine: metabolism
|2 MeSH
650 _ 2 |a Guanidinoacetate N-Methyltransferase: deficiency
|2 MeSH
650 _ 2 |a Homoarginine: metabolism
|2 MeSH
650 _ 2 |a Hydroxymethylglutaryl-CoA Reductase Inhibitors
|2 MeSH
650 _ 2 |a Intellectual Disability
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Muscular Diseases: chemically induced
|2 MeSH
650 _ 2 |a Muscular Diseases: metabolism
|2 MeSH
650 _ 2 |a Phosphocreatine: metabolism
|2 MeSH
650 _ 2 |a Speech Disorders
|2 MeSH
700 1 _ |a Hornig, Sönke
|b 1
700 1 _ |a Sasani, Ali
|b 2
700 1 _ |a Isbrandt, Dirk
|0 P:(DE-2719)2810976
|b 3
|u dzne
700 1 _ |a Gerloff, Christian
|b 4
700 1 _ |a Tsikas, Dimitris
|b 5
700 1 _ |a Schwedhelm, Edzard
|b 6
700 1 _ |a Choe, Chi-Un
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
773 _ _ |a 10.1007/s00726-020-02865-w
|g Vol. 52, no. 6-7, p. 1067 - 1069
|0 PERI:(DE-600)1480643-5
|n 6-7
|p 1067 - 1069
|t Amino acids
|v 52
|y 2020
|x 1438-2199
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/153374/files/726_2020_Article_2865.pdf
856 4 _ |y OpenAccess
|x icon
|u https://pub.dzne.de/record/153374/files/726_2020_Article_2865.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://pub.dzne.de/record/153374/files/726_2020_Article_2865.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://pub.dzne.de/record/153374/files/726_2020_Article_2865.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://pub.dzne.de/record/153374/files/726_2020_Article_2865.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/153374/files/726_2020_Article_2865.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:153374
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2810976
913 1 _ |a DE-HGF
|b Forschungsbereich Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-342
|2 G:(DE-HGF)POF3-300
|v Disease Mechanisms and Model Systems
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-17
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b AMINO ACIDS : 2021
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-22
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2020-08-22
|w ger
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-17
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-17
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-22
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-17
920 1 _ |0 I:(DE-2719)1011003
|k AG Isbrandt
|l Experimental Neurophysiology
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1011003
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21