001     153412
005     20240321221044.0
024 7 _ |a 10.1038/s41467-020-15059-5
|2 doi
024 7 _ |a pmid:32152317
|2 pmid
024 7 _ |a pmc:PMC7063047
|2 pmc
037 _ _ |a DZNE-2020-01409
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Dietachmayr, Michael
|b 0
245 _ _ |a Antagonistic activities of CDC14B and CDK1 on USP9X regulate WT1-dependent mitotic transcription and survival.
260 _ _ |a [London]
|c 2020
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1606298115_10437
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Regulation of mitosis secures cellular integrity and its failure critically contributes to the development, maintenance, and treatment resistance of cancer. In yeast, the dual phosphatase Cdc14 controls mitotic progression by antagonizing Cdk1-mediated protein phosphorylation. By contrast, specific mitotic functions of the mammalian Cdc14 orthologue CDC14B have remained largely elusive. Here, we find that CDC14B antagonizes CDK1-mediated activating mitotic phosphorylation of the deubiquitinase USP9X at serine residue 2563, which we show to be essential for USP9X to mediate mitotic survival. Starting from an unbiased proteome-wide screening approach, we specify Wilms' tumor protein 1 (WT1) as the relevant substrate that becomes deubiquitylated and stabilized by serine 2563-phosphorylated USP9X in mitosis. We further demonstrate that WT1 functions as a mitotic transcription factor and specify CXCL8/IL-8 as a target gene of WT1 that conveys mitotic survival. Together, we describe a ubiquitin-dependent signaling pathway that directs a mitosis-specific transcription program to regulate mitotic survival.
536 _ _ |a 345 - Population Studies and Genetics (POF3-345)
|0 G:(DE-HGF)POF3-345
|c POF3-345
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a CXCL8 protein, human
|2 NLM Chemicals
650 _ 7 |a Interleukin-8
|2 NLM Chemicals
650 _ 7 |a Transcription Factors
|2 NLM Chemicals
650 _ 7 |a USP9X protein, human
|2 NLM Chemicals
650 _ 7 |a WT1 Proteins
|2 NLM Chemicals
650 _ 7 |a WT1 protein, human
|2 NLM Chemicals
650 _ 7 |a CDC2 Protein Kinase
|0 EC 2.7.11.22
|2 NLM Chemicals
650 _ 7 |a CDK1 protein, human
|0 EC 2.7.11.22
|2 NLM Chemicals
650 _ 7 |a CDC14B protein, human
|0 EC 3.1.3.48
|2 NLM Chemicals
650 _ 7 |a Dual-Specificity Phosphatases
|0 EC 3.1.3.48
|2 NLM Chemicals
650 _ 7 |a Ubiquitin Thiolesterase
|0 EC 3.4.19.12
|2 NLM Chemicals
650 _ 2 |a A549 Cells
|2 MeSH
650 _ 2 |a Apoptosis
|2 MeSH
650 _ 2 |a CDC2 Protein Kinase: antagonists & inhibitors
|2 MeSH
650 _ 2 |a Dual-Specificity Phosphatases: antagonists & inhibitors
|2 MeSH
650 _ 2 |a Gene Knockdown Techniques
|2 MeSH
650 _ 2 |a HEK293 Cells
|2 MeSH
650 _ 2 |a HeLa Cells
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Interleukin-8: metabolism
|2 MeSH
650 _ 2 |a Mitosis: physiology
|2 MeSH
650 _ 2 |a Phosphorylation
|2 MeSH
650 _ 2 |a Transcription Factors
|2 MeSH
650 _ 2 |a Ubiquitin Thiolesterase: drug effects
|2 MeSH
650 _ 2 |a Ubiquitin Thiolesterase: genetics
|2 MeSH
650 _ 2 |a Ubiquitin Thiolesterase: metabolism
|2 MeSH
650 _ 2 |a WT1 Proteins: genetics
|2 MeSH
650 _ 2 |a WT1 Proteins: metabolism
|2 MeSH
700 1 _ |a Rathakrishnan, Abirami
|b 1
700 1 _ |a Karpiuk, Oleksandra
|b 2
700 1 _ |a von Zweydorf, Felix
|0 P:(DE-2719)2811552
|b 3
|u dzne
700 1 _ |a Engleitner, Thomas
|b 4
700 1 _ |a Fernández-Sáiz, Vanesa
|b 5
700 1 _ |a Schenk, Petra
|b 6
700 1 _ |a Ueffing, Marius
|b 7
700 1 _ |a Rad, Roland
|b 8
700 1 _ |a Eilers, Martin
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Gloeckner, Christian Johannes
|0 P:(DE-2719)2811291
|b 10
|u dzne
700 1 _ |a Clemm von Hohenberg, Katharina
|0 P:(DE-HGF)0
|b 11
|e Corresponding author
700 1 _ |a Bassermann, Florian
|b 12
773 _ _ |a 10.1038/s41467-020-15059-5
|g Vol. 11, no. 1, p. 1268
|0 PERI:(DE-600)2553671-0
|n 1
|p 1268
|t Nature Communications
|v 11
|y 2020
|x 2041-1723
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/153412/files/41467_2020_Article_15059.pdf
856 4 _ |y OpenAccess
|x icon
|u https://pub.dzne.de/record/153412/files/41467_2020_Article_15059.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://pub.dzne.de/record/153412/files/41467_2020_Article_15059.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://pub.dzne.de/record/153412/files/41467_2020_Article_15059.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://pub.dzne.de/record/153412/files/41467_2020_Article_15059.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/153412/files/41467_2020_Article_15059.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:153412
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2811552
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 10
|6 P:(DE-2719)2811291
913 1 _ |a DE-HGF
|b Forschungsbereich Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-345
|2 G:(DE-HGF)POF3-300
|v Population Studies and Genetics
|x 0
914 1 _ |y 2020
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-08-25
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2020-08-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-25
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-08-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2021
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-10-13T14:44:21Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-10-13T14:44:21Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2021-10-13T14:44:21Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-11
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2021
|d 2022-11-11
920 1 _ |0 I:(DE-2719)1210007
|k AG Gloeckner
|l Functional Neuroproteomics and Translational Biomarkers in Neurodegenerative Diseases
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)5000025
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21