001     153430
005     20230915094021.0
024 7 _ |a 10.1038/s41586-020-2461-z
|2 doi
024 7 _ |a 0028-0836
|2 ISSN
024 7 _ |a 0300-8746
|2 ISSN
024 7 _ |a 1476-4687
|2 ISSN
024 7 _ |a 2058-1106
|2 ISSN
024 7 _ |a altmetric:85439772
|2 altmetric
024 7 _ |a pmid:32641833
|2 pmid
037 _ _ |a DZNE-2020-01427
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Gallotta, Ivan
|0 P:(DE-2719)2811903
|b 0
|e First author
245 _ _ |a Extracellular proteostasis prevents aggregation during pathogenic attack
260 _ _ |a London
|c 2020
|b Macmillan28177
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1629192019_10705
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In metazoans, the secreted proteome participates in intercellular signalling and innate immunity, and builds the extracellular matrix scaffold around cells. Compared with the relatively constant intracellular environment, conditions for proteins in the extracellular space are harsher, and low concentrations of ATP prevent the activity of intracellular components of the protein quality-control machinery. Until now, only a few bona fide extracellular chaperones and proteases have been shown to limit the aggregation of extracellular proteins1,2,3,4,5. Here we performed a systematic analysis of the extracellular proteostasis network in Caenorhabditis elegans with an RNA interference screen that targets genes that encode the secreted proteome. We discovered 57 regulators of extracellular protein aggregation, including several proteins related to innate immunity. Because intracellular proteostasis is upregulated in response to pathogens6,7,8,9, we investigated whether pathogens also stimulate extracellular proteostasis. Using a pore-forming toxin to mimic a pathogenic attack, we found that C. elegans responded by increasing the expression of components of extracellular proteostasis and by limiting aggregation of extracellular proteins. The activation of extracellular proteostasis was dependent on stress-activated MAP kinase signalling. Notably, the overexpression of components of extracellular proteostasis delayed ageing and rendered worms resistant to intoxication. We propose that enhanced extracellular proteostasis contributes to systemic host defence by maintaining a functional secreted proteome and avoiding proteotoxicity.
536 _ _ |a 342 - Disease Mechanisms and Model Systems (POF3-342)
|0 G:(DE-HGF)POF3-342
|c POF3-342
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
650 _ 2 |a Aging: metabolism
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Caenorhabditis elegans: cytology
|2 MeSH
650 _ 2 |a Caenorhabditis elegans: genetics
|2 MeSH
650 _ 2 |a Caenorhabditis elegans: metabolism
|2 MeSH
650 _ 2 |a Caenorhabditis elegans: microbiology
|2 MeSH
650 _ 2 |a Caenorhabditis elegans Proteins: metabolism
|2 MeSH
650 _ 2 |a Extracellular Space: metabolism
|2 MeSH
650 _ 2 |a Fatty Acid-Binding Proteins: metabolism
|2 MeSH
650 _ 2 |a MAP Kinase Signaling System
|2 MeSH
650 _ 2 |a Protein Aggregates
|2 MeSH
650 _ 2 |a Protein Aggregation, Pathological: prevention & control
|2 MeSH
650 _ 2 |a Proteome: genetics
|2 MeSH
650 _ 2 |a Proteome: metabolism
|2 MeSH
650 _ 2 |a Proteostasis
|2 MeSH
650 _ 2 |a RNA Interference
|2 MeSH
700 1 _ |a Sandhu, Aneet
|0 P:(DE-2719)9001449
|b 1
|u dzne
700 1 _ |a Peters, Maximilian
|b 2
700 1 _ |a Haslbeck, Martin
|b 3
700 1 _ |a Jung, Raimund
|0 P:(DE-2719)2811479
|b 4
700 1 _ |a Agilkaya, Sinem
|0 P:(DE-2719)2812674
|b 5
700 1 _ |a Blersch, Jane L.
|0 P:(DE-2719)9001450
|b 6
|u dzne
700 1 _ |a Rödelsperger, Christian
|0 0000-0002-7905-9675
|b 7
700 1 _ |a Röseler, Waltraud
|b 8
700 1 _ |a Huang, Chaolie
|0 P:(DE-2719)2811852
|b 9
700 1 _ |a Sommer, Ralf J.
|0 0000-0003-1503-7749
|b 10
700 1 _ |a David, Della
|0 P:(DE-2719)2810353
|b 11
|e Last author
773 _ _ |a 10.1038/s41586-020-2461-z
|g Vol. 584, no. 7821, p. 410 - 414
|0 PERI:(DE-600)2590711-6
|n 7821
|p 410 - 414
|t Nature / Physical science
|v 584
|y 2020
|x 1476-4687
856 4 _ |u https://www.nature.com/articles/s41586-020-2461-z
909 C O |p VDB
|o oai:pub.dzne.de:153430
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2811903
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)9001449
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2811479
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2812674
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)9001450
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 9
|6 P:(DE-2719)2811852
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 11
|6 P:(DE-2719)2810353
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-342
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms and Model Systems
|x 0
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-08-32
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-32
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NATURE : 2019
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-04
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-04
915 _ _ |a IF >= 40
|0 StatID:(DE-HGF)9940
|2 StatID
|b NATURE : 2019
|d 2021-02-04
920 1 _ |0 I:(DE-2719)1210004
|k AG David
|l Protein Aggregation and Aging
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1210004
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21