001     153465
005     20230915094024.0
024 7 _ |a pmc:PMC7476718
|2 pmc
024 7 _ |a 10.1074/jbc.RA120.012601
|2 doi
024 7 _ |a 0006-3347
|2 ISSN
024 7 _ |a 0021-9258
|2 ISSN
024 7 _ |a 1067-8816
|2 ISSN
024 7 _ |a 1083-351X
|2 ISSN
024 7 _ |a 2516-5151
|2 ISSN
024 7 _ |a altmetric:76841272
|2 altmetric
024 7 _ |a pmid:32111735
|2 pmid
037 _ _ |a DZNE-2020-01462
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Koo, Chek Ziu
|0 0000-0003-3770-2594
|b 0
245 _ _ |a The tetraspanin Tspan15 is an essential subunit of an ADAM10 scissor complex
260 _ _ |a Bethesda, Md.
|c 2020
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1674829736_30744
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A disintegrin and metalloprotease 10 (ADAM10) is a transmembrane protein essential for embryonic development, and its dysregulation underlies disorders such as cancer, Alzheimer's disease, and inflammation. ADAM10 is a "molecular scissor" that proteolytically cleaves the extracellular region from >100 substrates, including Notch, amyloid precursor protein, cadherins, growth factors, and chemokines. ADAM10 has been recently proposed to function as six distinct scissors with different substrates, depending on its association with one of six regulatory tetraspanins, termed TspanC8s. However, it remains unclear to what degree ADAM10 function critically depends on a TspanC8 partner, and a lack of monoclonal antibodies specific for most TspanC8s has hindered investigation of this question. To address this knowledge gap, here we designed an immunogen to generate the first monoclonal antibodies targeting Tspan15, a model TspanC8. The immunogen was created in an ADAM10-knockout mouse cell line stably overexpressing human Tspan15, because we hypothesized that expression in this cell line would expose epitopes that are normally blocked by ADAM10. Following immunization of mice, this immunogen strategy generated four Tspan15 antibodies. Using these antibodies, we show that endogenous Tspan15 and ADAM10 co-localize on the cell surface, that ADAM10 is the principal Tspan15-interacting protein, that endogenous Tspan15 expression requires ADAM10 in cell lines and primary cells, and that a synthetic ADAM10/Tspan15 fusion protein is a functional scissor. Furthermore, two of the four antibodies impaired ADAM10/Tspan15 activity. These findings suggest that Tspan15 directly interacts with ADAM10 in a functional scissor complex.
536 _ _ |a 342 - Disease Mechanisms and Model Systems (POF3-342)
|0 G:(DE-HGF)POF3-342
|c POF3-342
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
650 _ 2 |a A549 Cells
|2 MeSH
650 _ 2 |a ADAM10 Protein: genetics
|2 MeSH
650 _ 2 |a ADAM10 Protein: metabolism
|2 MeSH
650 _ 2 |a Amyloid Precursor Protein Secretases: genetics
|2 MeSH
650 _ 2 |a Amyloid Precursor Protein Secretases: metabolism
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a HEK293 Cells
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Jurkat Cells
|2 MeSH
650 _ 2 |a Membrane Proteins: genetics
|2 MeSH
650 _ 2 |a Membrane Proteins: metabolism
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Mice, Knockout
|2 MeSH
650 _ 2 |a Multiprotein Complexes: genetics
|2 MeSH
650 _ 2 |a Multiprotein Complexes: metabolism
|2 MeSH
650 _ 2 |a Tetraspanins: genetics
|2 MeSH
650 _ 2 |a Tetraspanins: metabolism
|2 MeSH
700 1 _ |a Harrison, Neale
|0 0000-0001-6821-4089
|b 1
700 1 _ |a Noy, Peter J.
|b 2
700 1 _ |a Szyroka, Justyna
|b 3
700 1 _ |a Matthews, Alexandra L.
|b 4
700 1 _ |a Hsia, Hung-En
|0 P:(DE-2719)2811769
|b 5
|u dzne
700 1 _ |a Müller, Stephan A
|0 P:(DE-2719)2810938
|b 6
|u dzne
700 1 _ |a Tüshaus, Johanna
|0 P:(DE-2719)2812852
|b 7
|u dzne
700 1 _ |a Goulding, Joelle
|0 0000-0002-6227-4483
|b 8
700 1 _ |a Willis, Katie
|b 9
700 1 _ |a Apicella, Clara
|b 10
700 1 _ |a Cragoe, Bethany
|b 11
700 1 _ |a Davis, Edward
|b 12
700 1 _ |a Keles, Murat
|b 13
700 1 _ |a Malinova, Antonia
|b 14
700 1 _ |a McFarlane, Thomas A.
|b 15
700 1 _ |a Morrison, Philip R.
|b 16
700 1 _ |a Nguyen, Hanh T. H.
|b 17
700 1 _ |a Sykes, Michael C.
|b 18
700 1 _ |a Ahmed, Haroon
|b 19
700 1 _ |a Di Maio, Alessandro
|b 20
700 1 _ |a Seipold, Lisa
|b 21
700 1 _ |a Saftig, Paul
|b 22
700 1 _ |a Cull, Eleanor
|0 0000-0002-4309-4858
|b 23
700 1 _ |a Pliotas, Christos
|b 24
700 1 _ |a Rubinstein, Eric
|b 25
700 1 _ |a Poulter, Natalie S.
|0 0000-0002-3187-2130
|b 26
700 1 _ |a Briddon, Stephen J.
|b 27
700 1 _ |a Holliday, Nicholas D.
|b 28
700 1 _ |a Lichtenthaler, Stefan
|0 P:(DE-2719)2181459
|b 29
|u dzne
700 1 _ |a Tomlinson, Michael G.
|0 0000-0002-1189-0091
|b 30
|e Corresponding author
773 _ _ |a 10.1074/jbc.RA120.012601
|g Vol. 295, no. 36, p. 12822 - 12839
|0 PERI:(DE-600)1474604-9
|n 36
|p 12822 - 12839
|t The journal of biological chemistry
|v 295
|y 2020
|x 0021-9258
909 C O |p VDB
|o oai:pub.dzne.de:153465
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2811769
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2810938
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)2812852
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 29
|6 P:(DE-2719)2181459
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-342
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms and Model Systems
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-10-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-10-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J BIOL CHEM : 2019
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-05-04
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-05-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-05-04
920 1 _ |0 I:(DE-2719)1110006
|k AG Lichtenthaler
|l Neuroproteomics
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1110006
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21