001     154066
005     20240223115101.0
024 7 _ |a pmc:PMC7494685
|2 pmc
024 7 _ |a 10.1016/j.ebiom.2020.102989
|2 doi
024 7 _ |a altmetric:90109439
|2 altmetric
024 7 _ |a pmid:32920368
|2 pmid
037 _ _ |a DZNE-2021-00045
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Danielyan, Lusine
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Cell motility and migration as determinants of stem cell efficacy
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1708608687_31174
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a BackgroundStem cells` (SC) functional heterogeneity and its poorly understood aetiology impedes clinical development of cell-based therapies in regenerative medicine and oncology. Recent studies suggest a strong correlation between the SC migration potential and their therapeutic efficacy in humans. Designating SC migration as a denominator of functional SC heterogeneity, we sought to identify highly migrating subpopulations within different SC classes and evaluate their therapeutic properties in comparison to the parental non-selected cells.MethodsWe selected highly migrating subpopulations from mesenchymal and neural SC (sMSC and sNSC), characterized their features including but not limited to migratory potential, trophic factor release and transcriptomic signature. To assess lesion-targeted migration and therapeutic properties of isolated subpopulations in vivo, surgical transplantation and intranasal administration of MSCs in mouse models of glioblastoma and Alzheimer's disease respectively were performed.FindingsComparison of parental non-selected cells with isolated subpopulations revealed superior motility and migratory potential of sMSC and sNSC in vitro. We identified podoplanin as a major regulator of migratory features of sMSC/sNSC. Podoplanin engineering improved oncovirolytic activity of virus-loaded NSC on distantly located glioblastoma cells. Finally, sMSC displayed more targeted migration to the tumour site in a mouse glioblastoma model and remarkably higher potency to reduce pathological hallmarks and memory deficits in transgenic Alzheimer's disease mice.InterpretationFunctional heterogeneity of SC is associated with their motility and migration potential which can serve as predictors of SC therapeutic efficacy.FundingThis work was supported in part by the Robert Bosch Stiftung (Stuttgart, Germany) and by the IZEPHA grant.
536 _ _ |a 342 - Disease Mechanisms and Model Systems (POF3-342)
|0 G:(DE-HGF)POF3-342
|c POF3-342
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
650 _ 2 |a Alzheimer Disease: therapy
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Biomarkers
|2 MeSH
650 _ 2 |a Cell Movement
|2 MeSH
650 _ 2 |a Cell Survival
|2 MeSH
650 _ 2 |a Cell Tracking: methods
|2 MeSH
650 _ 2 |a Cells, Cultured
|2 MeSH
650 _ 2 |a Disease Models, Animal
|2 MeSH
650 _ 2 |a Gene Expression
|2 MeSH
650 _ 2 |a Gene Expression Profiling
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Membrane Glycoproteins: genetics
|2 MeSH
650 _ 2 |a Membrane Glycoproteins: metabolism
|2 MeSH
650 _ 2 |a Mesenchymal Stem Cells: cytology
|2 MeSH
650 _ 2 |a Mesenchymal Stem Cells: physiology
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Mice, Transgenic
|2 MeSH
650 _ 2 |a Neural Stem Cells: cytology
|2 MeSH
650 _ 2 |a Neural Stem Cells: physiology
|2 MeSH
650 _ 2 |a Oncolytic Virotherapy
|2 MeSH
650 _ 2 |a Stem Cell Transplantation
|2 MeSH
650 _ 2 |a Stem Cells: cytology
|2 MeSH
650 _ 2 |a Stem Cells: physiology
|2 MeSH
650 _ 2 |a Treatment Outcome
|2 MeSH
700 1 _ |a Schwab, Matthias
|b 1
700 1 _ |a Siegel, Georg
|b 2
700 1 _ |a Brawek, Bianca
|b 3
700 1 _ |a Garaschuk, Olga
|b 4
700 1 _ |a Asavapanumas, Nithi
|b 5
700 1 _ |a Buadze, Marine
|b 6
700 1 _ |a Lourhmati, Ali
|b 7
700 1 _ |a Wendel, Hans-Peter
|b 8
700 1 _ |a Avci-Adali, Meltem
|b 9
700 1 _ |a Krueger, Marcel A.
|b 10
700 1 _ |a Calaminus, Carsten
|b 11
700 1 _ |a Naumann, Ulrike
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Winter, Stefan
|b 13
700 1 _ |a Schaeffeler, Elke
|b 14
700 1 _ |a Spogis, Annett
|b 15
700 1 _ |a Beer-Hammer, Sandra
|b 16
700 1 _ |a Neher, Jonas J.
|0 P:(DE-2719)2811021
|b 17
|u dzne
700 1 _ |a Spohn, Gabriele
|b 18
700 1 _ |a Kretschmer, Anja
|b 19
700 1 _ |a Krämer-Albers, Eva-Maria
|b 20
700 1 _ |a Barth, Kerstin
|b 21
700 1 _ |a Lee, Hong Jun
|b 22
700 1 _ |a Kim, Seung U.
|b 23
700 1 _ |a Frey, William H.
|0 0000-0002-6373-0794
|b 24
700 1 _ |a Claussen, Claus D.
|b 25
700 1 _ |a Hermann, Dirk M.
|b 26
700 1 _ |a Doeppner, Thorsten R.
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Seifried, Erhard
|b 28
700 1 _ |a Gleiter, Christoph H.
|b 29
700 1 _ |a Northoff, Hinnak
|b 30
700 1 _ |a Schäfer, Richard
|0 0000-0003-1530-7980
|b 31
|e Corresponding author
773 _ _ |a 10.1016/j.ebiom.2020.102989
|g Vol. 60, p. 102989 -
|0 PERI:(DE-600)2799017-5
|p 102989
|t EBioMedicine
|v 60
|y 2020
|x 2352-3964
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/154066/files/DZNE-2021-00045.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/154066/files/DZNE-2021-00045.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:154066
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 17
|6 P:(DE-2719)2811021
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-342
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms and Model Systems
|x 0
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-25
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EBIOMEDICINE : 2021
|d 2022-11-25
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b EBIOMEDICINE : 2021
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-26T13:10:09Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-26T13:10:09Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-01-26T13:10:09Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-03
920 1 _ |0 I:(DE-2719)1210012
|k AG Neher
|l Neuroimmunology and Neurodegenerative Disease
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1210012
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21