001     154261
005     20240611120545.0
024 7 _ |a 10.1002/glia.23933
|2 doi
024 7 _ |a pmid:33156956
|2 pmid
024 7 _ |a 0894-1491
|2 ISSN
024 7 _ |a 1098-1136
|2 ISSN
024 7 _ |a altmetric:93949021
|2 altmetric
037 _ _ |a DZNE-2021-00115
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Müller, Franziska E
|0 0000-0003-0525-0714
|b 0
245 _ _ |a Serotonin receptor 4 regulates hippocampal astrocyte morphology and function.
260 _ _ |a Bognor Regis [u.a.]
|c 2021
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1718014896_5322
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a ISSN 1098-1136 not unique: **3 hits**.
520 _ _ |a Astrocytes are an important component of the multipartite synapse and crucial for proper neuronal network function. Although small GTPases of the Rho family are powerful regulators of cellular morphology, the signaling modules of Rho-mediated pathways in astrocytes remain enigmatic. Here we demonstrated that the serotonin receptor 4 (5-HT4 R) is expressed in hippocampal astrocytes, both in vitro and in vivo. Through fluorescence microscopy, we established that 5-HT4 R activation triggered RhoA activity via Gα13 -mediated signaling, which boosted filamentous actin assembly, leading to morphological changes in hippocampal astrocytes. We investigated the effects of these 5-HT4 R-mediated changes in mixed cultures and in acute slices, in which 5-HT4 R was expressed exclusively in astrocytes. In both systems, 5-HT4 R-RhoA signaling changed glutamatergic synaptic transmission: It increased the frequency of miniature excitatory postsynaptic currents (mEPSCs) in mixed cultures and reduced the paired-pulse-ratio (PPR) of field excitatory postsynaptic potentials (fEPSPs) in acute slices. Overall, our present findings demonstrate that astrocytic 5-HT4 R-Gα13 -RhoA signaling is a previously unrecognized molecular pathway involved in the functional regulation of excitatory synaptic circuits.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a 5-ht Zeug
|2 Other
650 _ 7 |a RhoA
|2 Other
650 _ 7 |a actin
|2 Other
650 _ 7 |a astrocytes
|2 Other
650 _ 7 |a neuronal excitability
|2 Other
650 _ 7 |a serotonin
|2 Other
650 _ 2 |a Astrocytes
|2 MeSH
650 _ 2 |a Excitatory Postsynaptic Potentials
|2 MeSH
650 _ 2 |a Hippocampus
|2 MeSH
650 _ 2 |a Receptors, Serotonin: genetics
|2 MeSH
650 _ 2 |a Serotonin
|2 MeSH
650 _ 2 |a Synaptic Transmission
|2 MeSH
700 1 _ |a Schade, Sophie K
|b 1
700 1 _ |a Cherkas, Volodymyr
|b 2
700 1 _ |a Stopper, Laura
|0 0000-0002-9648-6222
|b 3
700 1 _ |a Breithausen, Björn
|b 4
700 1 _ |a Minge, Daniel
|b 5
700 1 _ |a Varbanov, Hristo
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Wahl-Schott, Christian
|b 7
700 1 _ |a Antoniuk, Svitlana
|0 0000-0002-8226-1866
|b 8
700 1 _ |a Domingos, Catia
|b 9
700 1 _ |a Compan, Valérie
|0 0000-0002-4634-2765
|b 10
700 1 _ |a Kirchhoff, Frank
|0 0000-0002-2324-2761
|b 11
700 1 _ |a Henneberger, Christian
|0 P:(DE-2719)2811625
|b 12
|u dzne
700 1 _ |a Ponimaskin, Evgeni
|0 0000-0002-4570-5130
|b 13
|e Corresponding author
700 1 _ |a Zeug, Andre
|0 0000-0001-9858-5841
|b 14
|e Corresponding author
773 _ _ |a 10.1002/glia.23933
|g Vol. 69, no. 4, p. 872 - 889
|0 PERI:(DE-600)1474828-9
|n 4
|p 872 - 889
|t Glia
|v 69
|y 2021
|x 1098-1136
856 4 _ |u https://onlinelibrary.wiley.com/doi/10.1002/glia.23933
856 4 _ |u https://pub.dzne.de/record/154261/files/DZNE-2021-00115.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/154261/files/DZNE-2021-00115.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:154261
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 12
|6 P:(DE-2719)2811625
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-29
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-08
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-08
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GLIA : 2021
|d 2022-11-08
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b GLIA : 2021
|d 2022-11-08
920 1 _ |0 I:(DE-2719)7000005
|k U Preclinical Researchers - Bonn
|l U Preclinical Researchers - Bonn
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)7000005
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21