001     154305
005     20230915094033.0
024 7 _ |a 10.1159/000508723
|2 doi
024 7 _ |a pmid:32634802
|2 pmid
024 7 _ |a 0016-898X
|2 ISSN
024 7 _ |a 0304-324X
|2 ISSN
024 7 _ |a 1423-0003
|2 ISSN
024 7 _ |a 2235-154X
|2 ISSN
037 _ _ |a DZNE-2021-00159
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Hajek, André
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Which Factors Contribute to Frailty among the Oldest Old? Results of the Multicentre Prospective AgeCoDe and AgeQualiDe Study.
260 _ _ |a Basel [u.a.]
|c 2020
|b Karger
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1617118306_1514
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a ISSN 1423-0003 not unique: **3 hits**.
520 _ _ |a There is a lack of studies investigating the link between time-varying factors associated with changes in frailty scores in very old age longitudinally. This is important because the level of frailty is associated with subsequent morbidity and mortality.To examine time-dependent predictors of frailty among the oldest old using a longitudinal approach.Longitudinal data were drawn from the multicentre prospective cohort study 'Study on Needs, health service use, costs and health-related quality of life in a large sample of oldest-old primary care patients (85+)' (AgeQualiDe), covering primary care patients aged 85 years and over. Three waves were used (from follow-up, FU, wave 7 to FU wave 9 [with 10 months between each wave]; 1,301 observations in the analytical sample). Frailty was assessed using the Canadian Study of Health and Aging (CSHA) Clinical Frailty Scale (CFS). As explanatory variables, we included sociodemographic factors (marital status and age), social isolation as well as health-related variables (depression, dementia, and chronic diseases) in a regression analysis.In total, 18.9% of the individuals were mildly frail, 12.4% of the individuals were moderately frail, and 0.4% of the individuals were severely frail at FU wave 7. Fixed effects regressions revealed that increases in frailty were associated with increases in age (β = 0.23, p < 0.001), and dementia (β = 0.84, p < 0.01), as well as increases in chronic conditions (β = 0.03, p = 0.058).The study findings particularly emphasize the importance of changes in age, probably chronic conditions as well as dementia for frailty. Future research is required to elucidate the underlying mechanisms. Furthermore, future longitudinal studies based on panel regression models are required to confirm our findings.
536 _ _ |a 344 - Clinical and Health Care Research (POF3-344)
|0 G:(DE-HGF)POF3-344
|c POF3-344
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Chronic conditions
|2 Other
650 _ 7 |a Chronic illness
|2 Other
650 _ 7 |a Comorbidity
|2 Other
650 _ 7 |a Dementia
|2 Other
650 _ 7 |a Depression
|2 Other
650 _ 7 |a Frailty
|2 Other
650 _ 7 |a Longitudinal study
|2 Other
650 _ 7 |a Oldest old
|2 Other
650 _ 7 |a Physical illness
|2 Other
650 _ 2 |a Activities of Daily Living
|2 MeSH
650 _ 2 |a Aged, 80 and over
|2 MeSH
650 _ 2 |a Canada: epidemiology
|2 MeSH
650 _ 2 |a Cohort Studies
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Frail Elderly: statistics & numerical data
|2 MeSH
650 _ 2 |a Frailty: epidemiology
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Longitudinal Studies
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Primary Health Care: statistics & numerical data
|2 MeSH
650 _ 2 |a Prospective Studies
|2 MeSH
650 _ 2 |a Quality of Life
|2 MeSH
700 1 _ |a Brettschneider, Christian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Röhr, Susanne
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Gühne, Uta
|0 P:(DE-HGF)0
|b 3
700 1 _ |a van der Leeden, Carolin
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Lühmann, Dagmar
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Mamone, Silke
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Wiese, Birgitt
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Weyerer, Siegfried
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Werle, Jochen
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Fuchs, Angela
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Pentzek, Michael
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Weeg, Dagmar
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Mösch, Edelgard
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Heser, Kathrin
|0 P:(DE-2719)9000848
|b 14
|u dzne
700 1 _ |a Wagner, Michael
|0 P:(DE-2719)2000057
|b 15
|u dzne
700 1 _ |a Maier, Wolfgang
|0 P:(DE-2719)2000015
|b 16
|u dzne
700 1 _ |a Riedel-Heller, Steffi G
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Scherer, Martin
|0 P:(DE-HGF)0
|b 18
700 1 _ |a König, Hans-Helmut
|0 P:(DE-HGF)0
|b 19
773 _ _ |a 10.1159/000508723
|g Vol. 66, no. 5, p. 460 - 466
|0 PERI:(DE-600)1482689-6
|n 5
|p 460 - 466
|t Gerontology
|v 66
|y 2020
|x 1423-0003
909 C O |o oai:pub.dzne.de:154305
|p VDB
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 14
|6 P:(DE-2719)9000848
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 15
|6 P:(DE-2719)2000057
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 16
|6 P:(DE-2719)2000015
913 1 _ |a DE-HGF
|b Gesundheit
|l Erkrankungen des Nervensystems
|1 G:(DE-HGF)POF3-340
|0 G:(DE-HGF)POF3-344
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2022-11-24
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GERONTOLOGY : 2021
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-24
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-24
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b GERONTOLOGY : 2021
|d 2022-11-24
920 1 _ |0 I:(DE-2719)1011201
|k AG Wagner
|l Neuropsychology
|x 0
920 1 _ |0 I:(DE-2719)7000001
|k U Clinical Researchers - Bonn
|l U Clinical Researchers - Bonn
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1011201
980 _ _ |a I:(DE-2719)7000001
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21