000154308 001__ 154308
000154308 005__ 20240223115102.0
000154308 0247_ $$2doi$$a10.1016/j.celrep.2020.108175
000154308 0247_ $$2pmid$$apmid:32946807
000154308 0247_ $$2pmc$$apmc:PMC7470764
000154308 0247_ $$2ISSN$$a2211-1247
000154308 0247_ $$2ISSN$$a2639-1856
000154308 0247_ $$2altmetric$$aaltmetric:89391537
000154308 037__ $$aDZNE-2021-00162
000154308 041__ $$aEnglish
000154308 082__ $$a610
000154308 1001_ $$0P:(DE-HGF)0$$aSingh, Manvendra$$b0
000154308 245__ $$aA Single-Cell RNA Expression Map of Human Coronavirus Entry Factors.
000154308 260__ $$a[New York, NY]$$bElsevier$$c2020
000154308 3367_ $$2DRIVER$$aarticle
000154308 3367_ $$2DataCite$$aOutput Types/Journal article
000154308 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1708605517_31172
000154308 3367_ $$2BibTeX$$aARTICLE
000154308 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000154308 3367_ $$00$$2EndNote$$aJournal Article
000154308 500__ $$aISSN 2211-1247 not unique: **3 hits**.
000154308 520__ $$aTo predict the tropism of human coronaviruses, we profile 28 SARS-CoV-2 and coronavirus-associated receptors and factors (SCARFs) using single-cell transcriptomics across various healthy human tissues. SCARFs include cellular factors both facilitating and restricting viral entry. Intestinal goblet cells, enterocytes, and kidney proximal tubule cells appear highly permissive to SARS-CoV-2, consistent with clinical data. Our analysis also predicts non-canonical entry paths for lung and brain infections. Spermatogonial cells and prostate endocrine cells also appear to be permissive to SARS-CoV-2 infection, suggesting male-specific vulnerabilities. Both pro- and anti-viral factors are highly expressed within the nasal epithelium, with potential age-dependent variation, predicting an important battleground for coronavirus infection. Our analysis also suggests that early embryonic and placental development are at moderate risk of infection. Lastly, SCARF expression appears broadly conserved across a subset of primate organs examined. Our study establishes a resource for investigations of coronavirus biology and pathology.
000154308 536__ $$0G:(DE-HGF)POF3-342$$a342 - Disease Mechanisms and Model Systems (POF3-342)$$cPOF3-342$$fPOF III$$x0
000154308 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000154308 650_7 $$2Other$$aCOVID-19
000154308 650_7 $$2Other$$aSARS-CoV-2
000154308 650_7 $$2Other$$acoronaviruses
000154308 650_7 $$2Other$$arestriction factors
000154308 650_7 $$2Other$$ascRNA-seq
000154308 650_7 $$2Other$$aviral receptors
000154308 650_7 $$2NLM Chemicals$$aReceptors, Virus
000154308 650_7 $$0EC 3.4.15.1$$2NLM Chemicals$$aPeptidyl-Dipeptidase A
000154308 650_7 $$0EC 3.4.17.23$$2NLM Chemicals$$aACE2 protein, human
000154308 650_7 $$0EC 3.4.17.23$$2NLM Chemicals$$aAngiotensin-Converting Enzyme 2
000154308 650_7 $$0EC 3.4.21.-$$2NLM Chemicals$$aSerine Endopeptidases
000154308 650_7 $$0EC 3.4.21.-$$2NLM Chemicals$$aTMPRSS2 protein, human
000154308 650_2 $$2MeSH$$aA549 Cells
000154308 650_2 $$2MeSH$$aAngiotensin-Converting Enzyme 2
000154308 650_2 $$2MeSH$$aAnimals
000154308 650_2 $$2MeSH$$aBetacoronavirus: growth & development
000154308 650_2 $$2MeSH$$aCOVID-19
000154308 650_2 $$2MeSH$$aCell Line
000154308 650_2 $$2MeSH$$aChlorocebus aethiops
000154308 650_2 $$2MeSH$$aCoronavirus Infections: pathology
000154308 650_2 $$2MeSH$$aEnterocytes: metabolism
000154308 650_2 $$2MeSH$$aGene Expression Profiling
000154308 650_2 $$2MeSH$$aGoblet Cells: metabolism
000154308 650_2 $$2MeSH$$aHEK293 Cells
000154308 650_2 $$2MeSH$$aHumans
000154308 650_2 $$2MeSH$$aKidney Tubules, Proximal: cytology
000154308 650_2 $$2MeSH$$aKidney Tubules, Proximal: metabolism
000154308 650_2 $$2MeSH$$aNasal Mucosa: metabolism
000154308 650_2 $$2MeSH$$aNasal Mucosa: virology
000154308 650_2 $$2MeSH$$aPandemics
000154308 650_2 $$2MeSH$$aPeptidyl-Dipeptidase A: genetics
000154308 650_2 $$2MeSH$$aPeptidyl-Dipeptidase A: metabolism
000154308 650_2 $$2MeSH$$aPneumonia, Viral: pathology
000154308 650_2 $$2MeSH$$aReceptors, Virus: genetics
000154308 650_2 $$2MeSH$$aSARS-CoV-2
000154308 650_2 $$2MeSH$$aSerine Endopeptidases: genetics
000154308 650_2 $$2MeSH$$aSerine Endopeptidases: metabolism
000154308 650_2 $$2MeSH$$aSingle-Cell Analysis
000154308 650_2 $$2MeSH$$aVero Cells
000154308 650_2 $$2MeSH$$aViral Tropism: genetics
000154308 650_2 $$2MeSH$$aVirus Internalization
000154308 7001_ $$0P:(DE-2719)2812055$$aBansal, Vikas$$b1$$udzne
000154308 7001_ $$0P:(DE-HGF)0$$aFeschotte, Cédric$$b2
000154308 773__ $$0PERI:(DE-600)2649101-1$$a10.1016/j.celrep.2020.108175$$gVol. 32, no. 12, p. 108175 -$$n12$$p108175$$tCell reports$$v32$$x2211-1247$$y2020
000154308 8564_ $$uhttps://pub.dzne.de/record/154308/files/DZNE-2021-00162.pdf$$yOpenAccess
000154308 8564_ $$uhttps://pub.dzne.de/record/154308/files/DZNE-2021-00162.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000154308 909CO $$ooai:pub.dzne.de:154308$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000154308 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812055$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000154308 9131_ $$0G:(DE-HGF)POF3-342$$1G:(DE-HGF)POF3-340$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lErkrankungen des Nervensystems$$vDisease Mechanisms and Model Systems$$x0
000154308 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000154308 9141_ $$y2020
000154308 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17
000154308 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-17
000154308 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-17
000154308 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-03
000154308 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000154308 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL REP : 2021$$d2022-11-17
000154308 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-26T13:08:57Z
000154308 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000154308 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-26T13:08:57Z
000154308 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-17
000154308 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-17
000154308 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000154308 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-01-26T13:08:57Z
000154308 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-03
000154308 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCELL REP : 2021$$d2022-11-17
000154308 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000154308 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-03
000154308 9201_ $$0I:(DE-2719)1410003$$kAG Bonn 1$$lComputational analysis of biological networks$$x0
000154308 980__ $$ajournal
000154308 980__ $$aVDB
000154308 980__ $$aUNRESTRICTED
000154308 980__ $$aI:(DE-2719)1410003
000154308 9801_ $$aFullTexts